• Title/Summary/Keyword: Noise standards level

Search Result 109, Processing Time 0.024 seconds

A study on the acoustic performance evaluation of heat recovery ventilator with a sound absorbing duct (흡음덕트 부착 열회수형 환기장치의 음향성능 평가에 관한 연구)

  • Bae, Myung-Whan;Song, Jun-Young;Park, Hui-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.468-475
    • /
    • 2016
  • The purpose of this study is to investigate the acoustic problems of the conventional heat recovery ventilator and to suggest the methods of noise reduction from a heat recovery ventilator according to the installed location. The noise level, in this study, was measured and discussed as the parameters of size, wind volume and sound absorbing duct length for a heat recovery ventilator based on domestic and international related standards. It is found, as a result, that almost all of noise levels from the small and medium heat recovery ventilators without the sound absorbing duct in the anechoic chamber were higher than the noise standard value of 50 dB(A) regardless of the wind volume, and the noise levels went down when a sound absorbing duct was installed. In addition, the sound pressure level relative to frequency bands according to the length of sound absorbing duct was generally decreased, as the length of sound absorbing duct in the small and medium heat recovery ventilators was big, and the sound pressure level was generally increased, as the wind volume was great.

Field Test and Evaluation of Wind Turbine Noise according to IEC Standards (IEC 규격에 따른 풍력 터빈 소음의 현장 실증)

  • Cheong, Cheol-Ung;Jung, Sung-Su;Cheung, Wan-Sup;Shin, Soo-Hyun;Chun, Se-Jong;Lee, Sang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • The sound measurement techniques in IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang-Lee and 650 kW WTG at Hangwon-Lee in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure level s (ECSPL) of 650 kW WTG at Hangwon vary more widely with speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade-rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF

A Study on the Fan and Scroll for Ventilation (배기용 Fan Scroll에 대한 연구)

  • Song, S.B.;Park, S.I.;Lee, J.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.402-406
    • /
    • 2000
  • In the Over-The-Range, the outlet size is limited by the industrial standards. Therefor to enlarge the volume of cavity, the installation height of ventilation fan is become small, the system resistance is higher than before. For that reason, the important design variables such as the diameter of a fan, the scroll expansion angle, etc. which play the significant role on flow rate and noise, are confined. In this study, we made an experiment of the diameter of fans relation to scroll expansion angle and investigated flow rate of the length of fans in enlarged cavity volume of OTR, and then we designed the new scroll to improve the flow rate and noise level. As a result, flow rate increased to 110% compared to current scroll and the blade passing frequency of a fan is disappeared by inclined cut-off shapes.

  • PDF

A Study on the Conversion of Annoyance using the Noise Standard in Korea (국내 소음기준을 이용한 성가심(annoyance) 변환에 관한 연구)

  • Kim, Deuk-Sung;Chang, Seo-Il;Lee, Ki-Jung;Lee, Yeon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.754-758
    • /
    • 2006
  • The purpose of this study is to propose calculation and application method of a common factor from different noise source unit such as $L_{eq}$ and WECPNL, A calculation was conducted by method that propose TNO-PG. Also, An applied example is a noise environmental standard of Korea and Japan. After %HA of two country are calculated, noise standards of two countries were compared by using %HA. The result by a equation of %HA is to convert a noise level($L_{dn}$) into a %HA. To calculate a %HA, First $L_{eq}$ is converted into $L_{dn}$. Then, $L_{dn}$, has inputted into and %HA has deduced from a %HA equation of TNO-PG. If the same area is applied the same %HA value according to area categories, it can be applied the same %HA to different noise sources. As a results. a noise levels have computed different values because responses of human change in accordance with a noise sources. This results can be applied to the noise environmental assessment for a domestic railway and aircraft noise.

  • PDF

Fabrications and measurements of single layer YBCO dc-SQUID magnetometers designed with parallel-loop pickup coil (Parallel-loop 검출코일을 가지는 단일층 YBCO dc-SQUID 자력계의 제작 및 특성 연구)

  • 유권규;김인선;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • We have designed and fabricated the single-layer high $T_{c}$ SQUID magnetometer consisting of a directly coupled grain boundary junction SQUID with an inductance of 100 pH and 16 nested parallel pickup coils with the outermost dimension of 8.8 mm ${\times}$ 8.8 mm. The magnetometer was formed from a YBCO thin film deposited on an STO(100) bicrystal substrate with a misorientation angle of $30^{\circ}$. The SQUID magnetometer was further improved by optimizing the multi-loop pickup coil design for use in unshielded environments. Typical characteristics of the dc SQUID magnetometer had a modulation voltage of 40 $\mu\textrm{V}$ and a white noise of $30fT/Hz^{1}$2/. The SQUID magnetometer exhibited a 1/f noise level at 10 Hz reduced by a factor of about 3 compared with that of the conventional solid type pickup coil magnetometers and a very stable flux locked loop operation in magnetically disturbed environments.s.

  • PDF

Study on a Development of the Prediction Equation of the Wind Power Plant Noise (풍력발전소 소음 영향 예측식 개발에 관한 연구)

  • Gu, Jinhoi;Lee, Jaewon;Lee, Woo Seok;Jung, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • The wind power plants were installed in many places because of the low climate changing effects since 2000. Generally, the wind power plants located in the seaside and the mountainous area and the heights of the windmills are about 40 m~140 m above the ground level. So the noises emitted from the wind power plants propagate far away compared with other environment noise sources like trains and cars noise. Because of these reasons, the noise emitted from the wind power plant is easy to cause the additional social problems like as noise complaints. Under the situation, the ministry of environment has established the guideline to evaluate the environmental effects for the wind power plant. According to the guideline, the noise of the wind power plant has to meet 55 dB(A) at daytime and 45 dB(A) at night in the residential area, which is regulated in the noise and vibration management law. But, it is difficult to estimate the noise emitted from the wind power plant because of the absence of the prediction model of the wind power plant noise. Therefore, the noise prediction model for wind power plants using the regression analysis method is developed in this study. For the development of the model, the sound pressure levels of the wind power plants in Jeju island are measured and the correlations between the sound pressure levels are analyzed. Finally, the prediction equation of the wind power plant noise using by regression analysis method derived. The prediction equation for the wind power plant noise proposed in this study can be useful to evaluate the environmental effects in any wind power plant development district.

A lightweight true random number generator using beta radiation for IoT applications

  • Park, Kyunghwan;Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Kim, Jongbum;Kim, Young-Hee;Jin, Hong-Zhou
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.951-964
    • /
    • 2020
  • This paper presents a lightweight true random number generator (TRNG) using beta radiation that is useful for Internet of Things (IoT) security. In general, a random number generator (RNG) is required for all secure communication devices because random numbers are needed to generate encryption keys. Most RNGs are computer algorithms and use physical noise as their seed. However, it is difficult to obtain physical noise in small IoT devices. Since IoT security functions are required in almost all countries, IoT devices must be equipped with security algorithms that can pass the cryptographic module validation programs of each country. In this regard, it is very cumbersome to embed security algorithms, random number generation algorithms, and even physical noise sources in small IoT devices. Therefore, this paper introduces a lightweight TRNG comprising a thin-film beta-radiation source and integrated circuits (ICs). Although the ICs are currently being designed, the IC design was functionally verified at the board level. Our random numbers are output from a verification board and tested according to National Institute of Standards and Technology standards.

Audiometric Calibration of Aural Acoustic Immittance Instrument: A Review of Acoustic Immittance Instrument's Calibration

  • Kim, Jin-Dong
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.115-126
    • /
    • 2016
  • Audiometric calibration is a prerequisite for securing the reliability of audiometric test results by checking the internal consistency of the relevant instrument. The purpose of this review is to help instrument operators understand the calibration procedure of aural acoustic immittance instrument which is frequently used for objective assessment. By referring to the latest international standards and the national standards relevant to the aural acoustic immittance instrument, the following parameters will be reviewed: 1) introduction of performance characteristics, 2) detailed procedure of the calibration method. According to the newest international and national standards [IEC 60645-5 (2004), ANSI S3.39-1987 (R2012)], the aural acoustic immittance instrument basically includes six components: 1) calibration cavity, 2) acoustic immittance analysis system, 3) probe assembly/unit and signal, 4) pneumatic air-pressure pump system, 5) acoustic reflex activator system and 6) tympanogram and acoustic reflex plotting system, each of these components should meet set standards. The result of behavioral hearing tests is influenced by various complex factors including the examinee's cooperation, background noise of the examination room, measurement method, skill level of the audiologist and calibration status, but the objective hearing tests is more influenced by the calibration status of the instrument than any other factors. The audiologist should take full responsibility for the reliability of the hearing test result, so he/she should carry out the calibration check and adjustments of aural acoustic immittance instrument periodically and maintain the instrument continuously by referring to the newest standards and the manufacturer's instruction manual.

Building a Graphite Calorimetry System for the Dosimetry of Therapeutic X-ray Beams

  • Kim, In Jung;Kim, Byoung Chul;Kim, Joong Hyun;Chung, Jae-Pil;Kim, Hyun Moon;Yi, Chul-Young
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.810-816
    • /
    • 2017
  • A graphite calorimetry system was built and tested under irradiation. The noise level of the temperature measurement system was approximately 0.08 mK (peak to peak). The temperature of the core part rose by approximately 8.6 mK at 800 MU (monitor unit) for 6-MV X-ray beams, and it increased as X-ray energy increased. The temperature rise showed less spread when it was normalized to the accumulated charge, as measured by an external monitoring chamber. The radiation energy absorbed by the core part was determined to have values of $0.798J/{\mu}C$, $0.389J/{\mu}C$, and $0.352J/{\mu}C$ at 6 MV, 10 MV, and 18 MV, respectively. These values were so consistent among repeated runs that their coefficient of variance was less than 0.15%.

Research on Application of Functional Safety for Developing Combat Hybrid Electric Vehicles (하이브리드 전투차량의 기능안전성 적용 연구)

  • Chang, Kyogun;Lee, Yoon Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.543-549
    • /
    • 2012
  • Hybrid electric propulsion systems are expected as future primary combat platforms because the systems can supply enough electric power, easily locate components inside vehicles, and maneuver without undesired noise. However, increasing electric/electronic/software usage causes abnormal failure patterns which have not been noticeable in conventional automotive. Recently, the functional safety standard for road vehicles were enacted and vehicle manufacturers request their components which satisfy standardized quality. This research analyzes functional safety standards(IEC 61508 and ISO 26262) and compares the standards for road vehicles with military standards of system safety. Strategies to apply functional safety in the combat hybrid electric vehicle are scrutinized.