• 제목/요약/키워드: Noise sound classification

검색결과 79건 처리시간 0.022초

시간 축 주의집중 기반 동물 울음소리 분류 (Temporal attention based animal sound classification)

  • 김정민;이영로;김동현;고한석
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.406-413
    • /
    • 2020
  • 본 논문에서는 조류와 양서류 울음소리의 구별 정확도를 높이기 위해 게이트 선형유닛과 자가주의 집중 모듈을 활용해서 데이터의 중요한 부분을 중심으로 특징 추출 및 데이터 프레임의 중요도를 판별해 구별 정확도를 높인다. 이를 위해 먼저 1차원의 음향 데이터를 로그 멜 스펙트럼으로 변환한다. 로그 멜 스펙트럼에서 배경잡음같이 중요하지 않은 정보는 게이트 선형유닛을 거쳐 제거한다. 그러고 난 뒤 시간 축에 자가주의집중기법을 적용해 구별 정확도를 높인다. 사용한 데이터는 자연환경에서 멸종위기종을 포함한 조류 6종의 울음소리와 양서류 8종의 울음소리로 구성했다. 그 결과, 게이트 선형유닛 알고리즘과 시간 축에서 자가주의집중을 적용한 구조의 평균 정확도는 조류를 구분했을 때 91 %, 양서류를 구분했을 때 93 %의 분류율을 보였다. 또한, 기존 알고리즘보다 약 6 % ~ 7 % 향상된 정확도를 보이는 것을 확인했다.

잡음 학생 모델 기반의 자가 학습을 활용한 음향 사건 검지 (Sound event detection model using self-training based on noisy student model)

  • 김남균;박창수;김홍국;허진욱;임정은
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.479-487
    • /
    • 2021
  • 본 논문에서는 잡음 학생 모델 기반의 자가 학습을 활용한 음향 사건 검지 기법을 제안한다. 제안된 음향 사건 검지 모델은 두 단계로 구성된다. 첫 번째 단계에서는 잔차 합성곱 순환 신경망(Residual Convolutional Recurrent Neural Network, RCRNN)을 훈련하여 레이블이 지정되지 않은 비표기 데이터셋의 레이블 예측에 활용한다. 두 번째 단계에서는 세 가지 잡음 종류를 적용한 잡음 학생 모델을 자가학습 기법으로 반복하여 학습한다. 여기서 잡음 학생 모델은 SpecAugment, Mixup, 시간-주파수 이동을 활용한 특징 잡음, 드롭아웃을 활용한 모델 잡음, 그리고 semi-supervised loss function을 적용한 레이블 잡음을 활용하여 학습된다. 제안된 음향 사건 검지 모델의 성능은 Detection and Classification of Acoustic Scenes and Events(DCASE) 2020 Challenge Task 4의 validation set으로 평가하였다. DCASE 2020 챌린지 데이터셋의 baseline 및 최상위 랭크된 모델과 이벤트 단위 F1 점수 성능을 비교한 결과, 제안된 음향 사건 검지 모델이 단일 모델과 앙상블 모델에서 최상위 모델 대비 F1 점수를 각각 4.6 %와 3.4 % 향상시켰다.

Real-time automated detection of construction noise sources based on convolutional neural networks

  • Jung, Seunghoon;Kang, Hyuna;Hong, Juwon;Hong, Taehoon;Lee, Minhyun;Kim, Jimin
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.455-462
    • /
    • 2020
  • Noise which is unwanted sound is a serious pollutant that can affect human health, as well as the working and living environment if exposed to humans. However, current noise management on the construction project is generally conducted after the noise exceeds the regulation standard, which increases the conflicts with inhabitants near the construction site and threats to the safety and productivity of construction workers. To overcome the limitations of the current noise management methods, the activities of construction equipment which is the main source of construction noise need to be managed throughout the construction period in real-time. Therefore, this paper proposed a framework for automatically detecting noise sources in construction sites in real-time based on convolutional neural networks (CNNs) according to the following four steps: (i) Step 1: Definition of the noise sources; (ii) Step 2: Data preparation; (iii) Step 3: Noise source classification using the audio CNN; and (iv) Step 4: Noise source detection using the visual CNN. The short-time Fourier transform (STFT) and temporal image processing are used to contain temporal features of the audio and visual data. In addition, the AlexNet and You Only Look Once v3 (YOLOv3) algorithms have been adopted to classify and detect the noise sources in real-time. As a result, the proposed framework is expected to immediately find construction activities as current noise sources on the video of the construction site. The proposed framework could be helpful for environmental construction managers to efficiently identify and control the noise by automatically detecting the noise sources among many activities carried out by various types of construction equipment. Thereby, not only conflicts between inhabitants and construction companies caused by construction noise can be prevented, but also the noise-related health risks and productivity degradation for construction workers and inhabitants near the construction site can be minimized.

  • PDF

빔형성 방법을 이용한 반사계수 측정 (Measurement of reflection coefficient using beamforming method)

  • 주형준;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.699-704
    • /
    • 2002
  • A method using beamforming algorithm has been developed to measure oblique incidence reflection coefficients of sound absorption materials. MUSIC(Multiple Signal Classification) method detects the angles of incidence and reflection. By separating the incident and reflected waves using beamforming method, the reflection coefficient is calculated. Spatial smoothing technique is also used to reduce the coherence between the incident and reflected waves. The test materials were modeled as a locally reacting surface. Numerical and experiment results are performed to verify the acuracy of proposed method.

  • PDF

빔형성 방법을 이용한 경사 반사계수 측정 (Measurement of Oblique Incidence Reflection Coefficient Using Beamforming Method)

  • 주형준;강연준
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.438-444
    • /
    • 2003
  • A method using beamforming algorithm has been developed to measure oblique incidence reflection coefficients of sound absorption materials. MUSIC(multiple signal classification) method detects the angles of incidence and reflection. By separating the incident and reflected waves using beamforming method, the reflection coefficient is calculated. Spatial smoothing technique Is also used to reduce the coherence between the incident and reflected waves. Numerical and experiment results are performed to verify the accuracy of proposed method.

이산 웨이브렛 변환을 이용한 유효 음성 추출을 위한 머징 알고리즘 (A Merging Algorithm with the Discrete Wavelet Transform to Extract Valid Speech-Sounds)

  • 김진옥;황대준;백한욱;정진현
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권3호
    • /
    • pp.289-294
    • /
    • 2002
  • 데이타로부터 유효한 음성 데이타를 추출하는 것은 음성 인식분야에서 중요하다. 본 논문의 음성 추출 기술은 빠른 연산이 가능하며 음성의 전처리 과정에 적합한 이산 웨이브렛 변환을 사용하고 있으며, 이산 웨이브렛 변환의 복수 해상도 해석 특징을 이용한 머징 알고리즘으로 유효한 음성을 추출하고 노이즈 제거를 동시에 구현한다. 머징 알고리즘은 음성만으로도 처리 매개변수를 결정할 수 있고 또한 시스템 잡음에 대하여서도 독립적이기 때문에, 유효 음성을 추출하는데 매우 효과적이다. 그리고 머징 알고리즘은 시스템 잡음에 대한 적응 특성을 갖고 탁월한 노이즈 분리 특성을 갖는다.

Convolutional neural network 기법을 이용한 턱수염물범 신호 판별 (Classification of bearded seals signal based on convolutional neural network)

  • 김지섭;윤영글;한동균;나형술;최지웅
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.235-241
    • /
    • 2022
  • 수동 음향 관측을 통해 수집된 방대한 양의 데이터에서 해양포유류의 소리를 탐지하고 식별하기 위해 합성곱 신경망(Convolutional Neural Network, CNN)을 활용한 연구가 많이 수행되고 있다. 본 연구는 2017년 8월부터 2018년 8월까지 동시베리아 해에서 수집된 수중음향 스펙트럼 이미지를 기반으로 CNN을 활용하여 턱수염물범 소리의 분류 자동화 가능성을 확인해 보았다. 학습 데이터로서 다른 소음이 거의 포함되지 않은 뚜렷한 턱수염물범 소리를 사용하였을 때, 암기로 인한 과적합이 발생하였다. 일부 데이터를 소음이 포함된 데이터로 교체하여 학습시켜 수집된 전체 데이터로 평가한 결과 정확도(0.9743), 정밀도(0.9783), 재현율(0.9520)으로 모델이 이전보다 일반화되어 과적합이 방지되는 것을 확인하였다. 본 연구를 통해 물범신호 분류는 학습 데이터에 소음이 포함되었을 때 성능이 증가하는 것으로 나타났다.

신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법 (Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System)

  • 한형섭;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

이산 웨이브렛 변환을 이용한 유효 음성 추출에 관한 연구 (A Study on Extracting Valid Speech Sounds by the Discrete Wavelet Transform)

  • 김진옥;황대준;백한욱;정진현
    • 정보처리학회논문지B
    • /
    • 제9B권2호
    • /
    • pp.231-236
    • /
    • 2002
  • 유효한 무성음이 시스템 노이즈와 합성됐을 경우 유효한 무성음 추출에 많은 어려움이 있으나 본 논문에서는 유효한 무성음 추출에 있어 이산 웨이브렛 변환을 이용한 신호 해석 내용을 기반으로 주파수와 그 위치를 블록별로 머징 규칙으로 유효 여부를 결정하기 때문에 노이즈가 많은 환경에서도 유효한 무성음 추출이 가능하다. 머징 알고리즘은 음성만으로도 처리 매개변수를 결정할 수 있고 시스템 잡음에 대하여서도 독립적이기 때문에 유효한 음성을 추출하는데 매우 효과적이다. 실험 결과를 통하여 유효한 음성 추출 처리 과정에서 보다 향상된 결과를 보이고 있으며 특히 고주파 노이즈에 대한 강한 적응력을 제시하고 시스템 구현에도 용이한 시스템 튜닝을 가능케 한다.

Classification of Environmentally Distorted Acoustic Signals in Shallow Water Using Neural Networks : Application to Simulated and Measured Signal

  • Na, Young-Nam;Park, Joung-Soo;Chang, Duck-Hong;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.54-65
    • /
    • 1998
  • This study attempts to test the classifying performance of a neural network and thereby examine its applicability to the signals distorted in a shallow water environment. Linear frequency modulated(LFM) signals are simulated by using an acoustic model and also measured through sea experiment. The network is constructed to have three layers and trained on both data sets. To get normalized power spectra as feature vectors, the study considers the three transforms : shot-time Fourier transform (STFT), wavelet transform (WT) and pseudo Wigner-Ville distribution (PWVD). After trained on the simulated signals over water depth, the network gives over 95% performance with the signal to noise ratio (SNR) being up to-10 dB. Among the transforms, the PWVD presents the best performance particularly in a highly noisy condition. The network performs worse with the summer sound speed profile than with the winter profile. It is also expected to present much different performance by the variation of bottom property. When the network is trained on the measured signals, it gives a little better results than that trained on the simulated data. In conclusion, the simulated signals are successfully applied to training a network, and the trained network performs well in classifying the signals distorted by a surrounding environment and corrupted by noise.

  • PDF