• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.022 seconds

Deep Learning-based Analysis of Meat Freshness Measurement (고기 신선도 측정 데이터의 딥러닝 기반 분석)

  • Jang, Aera;Kim, Hey-Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.418-427
    • /
    • 2020
  • The measurement of meat freshness at meat markets is important for the health of consumers. Currently a variety of sensors have been studied for the measurement of the meat freshness. Therefore, the analysis of sensor data is needed for the reduction of measurement errors. In this paper, we analyze the freshness measurement data of ten sensors based on deep learning. The measured data are composed of beef, pork and chicken, whose reliability and noise-robustness are examined by a deep neural network. Further, to search for multiple sensors better than a torrymeter, PCA (principle component analysis) is carried. Then, we validated that the performance of the three sensors outperforms the torrymeter in the experiment.

Wide-Input Range Dual Mode PWM / Linear Buck Converter with High robustness ESD Protection Circuit

  • Song, Bo-Bae;Koo, Yong-Seo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.292-300
    • /
    • 2015
  • This paper proposes a high-efficiency, dual-mode PWM / linear buck converter with a wide-input range. The proposed converter was designed with a mode selector that can change the operation between PWM / linear mode by sensing a load current. The proposed converter operates in a linear mode during a light load and in PWM mode during a heavy load condition in order to ensure high efficiency. In addition, the mode selector uses a bit counter and a transmission gate designed to protect from a malfunction due to noise or a time-delay. Also, in conditions between $-40^{\circ}C$ and $140^{\circ}C$, the converter has variations in temperature of $0.5mV/^{\circ}C$ in the PWM mode and of $0.24mV/^{\circ}C$ in the linear mode. Also, to prevent malfunction and breakdown of the IC due to static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class(Chip level) ESD protection circuit of a P-substrate Triggered SCR type with high robustness characteristics.

A Study on The Adaptive Robust Servocontroller (견실한 서보적응제어기에 관한 연구)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.513-525
    • /
    • 1990
  • This paper presents Adaptive Robust Servocontrol(ARSC) scheme, which is an explicit(or indirect) pole-assignment adaptive algorithm with the property of "robustness". It guarantees asymptotic regulation and tracking in the presence of finite parameter perturbations of the unknown plant(or process) model. The controller structure is obtained by transforming a robust control theory into an adaptive control version. This controller structure is combined with the model estimation algorithm which includes a dead-zone for bounded noise. It is proved theoretically that this combination of control and identification is globally convergent and stable. It is also shown, through a real-time simulation study, that the desired closed-loop poles of the augmented system can be assigned directly, and that the adjustment mechanism of the scheme tunes the controller parameters according to the assigned closed-loop poles.oop poles.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

Characteristics of Interface States in One-dimensional Composite Photonic Structures

  • Zhang, Qingyue;Mao, Weitao;Zhao, Qiuling;Wang, Maorong;Wang, Xia;Tam, Wing Yim
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.270-281
    • /
    • 2022
  • Based on the transfer-matrix method (TMM), we report the characteristics of the interface states in one-dimensional (1D) composite structures consisting of two photonic crystals (PCs) composed of binary dielectrics A and B, with unit-cell configurations ABA (PC I) and BAB (PC II). The dependence of the interface states on the number of unit cells N and the boundary factor x are displayed. It is verified that the interface states are independent of N when the PC has inversion symmetry (x = 0.5). Besides, the composite structures support the formation of interface states independent of the PC symmetry, except that the positions of the interface states will be varied within the photonic band gaps. Moreover, the robustness of the interface states against nonuniformities is investigated by adding Gaussian noise to the layer thickness. In the case of inversion symmetry (x = 0.5) the most robust interface states are achieved, while for the other cases (x ≠ 0.5) interface states decay linearly with position inside the band gap. This work could shed light on the development of robust photonic devices.

A Study on Improvement of the Thermal Deformation Robustness of Brake Disc for Braking Quietness of Eco-Friendly Vehicles (친환경 차량의 제동 정숙성을 위한 브레이크 디스크의 열변형 강건성 향상에 관한 연구)

  • Jaehun Shim;Sera Hwang;Gabbae Jeon;ChangSup Kong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.3
    • /
    • pp.32-37
    • /
    • 2024
  • Braking judder vibration caused by thermal deformation of disc has been a major problem in brake system for a long time and many researchers have analyzed its mechanisms and developed solutions. However, judder vibration still occurs due to harsher vehicle driving conditions like increased power of EV (Electric Vehicle) and various environmental characteristics. In particular, in the case of eco-friendly vehicles such as EV, it is predicted that judder vibration will become a bigger problem due to the quiet driving condition compared to ICE (Internal Combustion Engine) vehicles. In addition, existing studies on judder vibration have been focused on the capacity and thermal deformation of the braking friction surface. So, the influence analysis of thermal deformation on the non-friction surface of the brake disc is relatively insufficient. In this study, we attempt to secure braking characteristics that are insensitive to thermal deformation in terms of the non-friction surface of the disc, focusing on the coning characteristic that occurs during braking thermal deformation. For this purpose, various factors of the non-friction surface of the disc are analyzed using robust design. The design standard for the robustness of the brake disc against judder vibration is proposed through the research results.

Geometrically Invariant Image Watermarking Using Connected Objects and Gravity Centers

  • Wang, Hongxia;Yin, Bangxu;Zhou, Linna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2893-2912
    • /
    • 2013
  • The design of geometrically invariant watermarking is one of the most challenging work in digital image watermarking research area. To achieve the robustness to geometrical attacks, the inherent characteristic of an image is usually used. In this paper, a geometrically invariant image watermarking scheme using connected objects and gravity center is proposed. First, the gray-scale image is converted into the binary one, and the connected objects according to the connectedness of binary image are obtained, then the coordinates of these connected objects are mapped to the gray-scale image, and the gravity centers of those bigger objects are chosen as the feature points for watermark embedding. After that, the line between each gravity center and the center of the whole image is rotated an angle to form a sector, and finally the same version of watermark is embedded into these sectors. Because the image connectedness is topologically invariant to geometrical attacks such as scaling and rotation, and the gravity center of the connected object as feature points is very stable, the watermark synchronization is realized successfully under the geometrical distortion. The proposed scheme can extract the watermark information without using the original image or template. The simulation results show the proposed scheme has a good invisibility for watermarking application, and stronger robustness than previous feature-based watermarking schemes against geometrical attacks such as rotation, scaling and cropping, and can also resist common image processing operations including JPEG compression, adding noise, median filtering, and histogram equalization, etc.

Robustness Evaluation of Image Watermarking mixed Key and Logo Scheme (키와 로고 방식을 혼합한 이미지 워터마킹의 강인성 평가)

  • Park, Young;Kim, Yoon-Ho;Choi, Se-Ha;Lee, Myong-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.598-601
    • /
    • 2002
  • In this research, robustness of image watermarking mixed Key and Logo scheme was evaluated. A personal ID of a copyrighter was key and watermark was logo image. The standard images of Baboon, Cameraman and Lena were used for experimental images, binary image‘Park’of 32$\times$32 and 64$\times$64 size were used for the watermark image, respectively. for robustness evaluation of the watermark, reconstructive rates of the watermark were obtained from images inserted watermark with image transformation or JPEG lossy compression. The experimental results show that the reconstructive rates of the case of 32$\times$32 watermark was better than the case of the 64$\times$64 watermark; average 5.9%, 13.9%, 6.5%, and 4.2% in the case of scale-down rates, rotational rates, impulse noise power density, and JPEG lossy compression rates, respectively.

  • PDF

Real-Time Change Detection Architecture Based on SOM for Video Surveillance Systems (영상 감시시스템을 위한 SOM 기반 실시간 변화 감지 기법)

  • Kim, Jongwon;Cho, Jeongho
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.109-117
    • /
    • 2019
  • In modern society, due to various accidents and crime threats committed to an unspecified number of people, individual security awareness is increasing throughout society and various surveillance techniques are being actively studied. Still, there is a decline in robustness due to many problems, requiring higher reliability monitoring techniques. Thus, this paper suggests a real-time change detection technique to complement the low robustness problem in various environments and dynamic/static change detection and to solve the cost efficiency problem. We used the Self-Organizing Map (SOM) applied as a data clustering technique to implement change detection, and we were able to confirm the superiority of noise robustness and abnormal detection judgment compared to the detection technique applied to the existing image surveillance system through simulation in the indoor office environment.

Robust Design Method for Complex Stochastic Inventory Model

  • Hwang, In-Keuk;Park, Dong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1999.04a
    • /
    • pp.426-426
    • /
    • 1999
  • ;There are many sources of uncertainty in a typical production and inventory system. There is uncertainty as to how many items customers will demand during the next day, week, month, or year. There is uncertainty about delivery times of the product. Uncertainty exacts a toll from management in a variety of ways. A spurt in a demand or a delay in production may lead to stockouts, with the potential for lost revenue and customer dissatisfaction. Firms typically hold inventory to provide protection against uncertainty. A cushion of inventory on hand allows management to face unexpected demands or delays in delivery with a reduced chance of incurring a stockout. The proposed strategies are used for the design of a probabilistic inventory system. In the traditional approach to the design of an inventory system, the goal is to find the best setting of various inventory control policy parameters such as the re-order level, review period, order quantity, etc. which would minimize the total inventory cost. The goals of the analysis need to be defined, so that robustness becomes an important design criterion. Moreover, one has to conceptualize and identify appropriate noise variables. There are two main goals for the inventory policy design. One is to minimize the average inventory cost and the stockouts. The other is to the variability for the average inventory cost and the stockouts The total average inventory cost is the sum of three components: the ordering cost, the holding cost, and the shortage costs. The shortage costs include the cost of the lost sales, cost of loss of goodwill, cost of customer dissatisfaction, etc. The noise factors for this design problem are identified to be: the mean demand rate and the mean lead time. Both the demand and the lead time are assumed to be normal random variables. Thus robustness for this inventory system is interpreted as insensitivity of the average inventory cost and the stockout to uncontrollable fluctuations in the mean demand rate and mean lead time. To make this inventory system for robustness, the concept of utility theory will be used. Utility theory is an analytical method for making a decision concerning an action to take, given a set of multiple criteria upon which the decision is to be based. Utility theory is appropriate for design having different scale such as demand rate and lead time since utility theory represents different scale across decision making attributes with zero to one ranks, higher preference modeled with a higher rank. Using utility theory, three design strategies, such as distance strategy, response strategy, and priority-based strategy. for the robust inventory system will be developed.loped.

  • PDF