• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.028 seconds

Suboptimal Decision Fusion in Wireless Sensor Networks under Non-Gaussian Noise Channels (비가우시안 잡음 채널을 갖는 무선 센서 네트워크의 준 최적화 결정 융합에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Decision fusion in wireless sensor networks under non-Gaussian noise channels is studied. To consider the tail behavior noise distributions, we use a exponentially-tailed distribution as a wide class of noise distributions. Based on a canonical parallel fusion model with fading and noise channels, the likelihood ratio(LR) based fusion rule is considered as an optimal fusion rule under Neyman-Pearson criterion. With both high and low signal-to-noise ratio (SNR) approximation to the optimal rule, we obtain several suboptimal fusion rules. and we propose a simple fusion rule that provides robust detection performance with a minimum prior information, Performance evaluation for several fusion rules is peformed through simulation. Simulation results show the robustness of the Proposed simple fusion rule.

  • PDF

Improved Snakes Algorithm for Tongue Image Segmentation in Oriental Tongue Diagnosis (한방 설진에서 혀 영상 분할을 위한 개선된 스네이크 알고리즘)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • Tongue image segmentation is critical for automation of the tongue diagnosis system. However, most image segmentation methods for tongue diagnosis systems in oriental medicine have been proposed as user-based manual types or semi-automatic types. This study proposed a new method for tongue image segmentation, which is the most important image processing stage for complete automation of the tongue diagnosis system in oriental medicine. The proposed method improved the conventional snake algorithm, by making improvement on the internal energy function so that, as the points move outward reversely, the snake energy function is minimized, by using the image characteristics of tongue images. To calculate external energy, hierarchical spatial filtering is applied to ensure resistance against noise. Also, The proposed method was tested by using sample images and actual images, and showed more robustness against the background noise than the conventional snake algorithm. And, when one selected point was moved by the improved snake algorithm, energy values at the starting, middle, and end points were analyzed, and showed robustness that does not fall in the local minima.

Detection Robustness Enhancement and Utility Scheme of Alternating Automotive Dual Beam Laser Radar (합차신호를 이용한 차량용 듀얼 빔 레이저 레이더의 견고한 탐지 능력 향상 방안)

  • Lee Seung-Gi;Yoo Seung-Sun;You Kang-Soo;Kim Sam-Tek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.743-754
    • /
    • 2006
  • In the proposed method, two regular laser working at two different wavelengths perform moving object detection alternatively in time. The laser intensity and the beaming period of each laser is equally maintain as to the single laser radar, hence, externally, dual beam lasers radar works exactly same as the single beam laser radar except that the proposed dual lasers radar needs additional post-processing of received signals in the receiver. To verify the robustness of the proposed method, a set of computer simulation has been performed. The communication channel is assumed to be additive white Gaussian noise, and the perfect synchronization is assumed. All other simulation parameters such as signal power and signalling period are equally maintain in both systems while the signal processing time such as spreading and filtering are expected to be trivial in call cases.

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge (지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Choi, Kang-Min;Lee, Jong-Heon;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation (부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법)

  • Byeon, BuKeun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

Communication Equalizer Algorithms with Decision Feedback based on Error Probability (오류 확률에 근거한 결정 궤환 방식의 통신 등화 알고리듬)

  • Kim, Nam-Yong;Hwang, Young-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2390-2395
    • /
    • 2011
  • For intersymbol interference (ISI) compensation from communication channels with multi-path fading and impulsive noise, a decision feedback equalizer algorithm that minimizes Euclidean distance of error probability is proposed. The Euclidean distance of error probability is defined as the quadratic distance between the probability error signal and Dirac-delta function. By minimizing the distance with respect to equalizer weight based on decision feedback structures, the proposed decision feedback algorithm has shown to have significant effect of residual ISI cancellation on severe multipath channels as well as robustness against impulsive noise.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

A Study on the Identification Method for Flutter Derivatives of Bridge Girders using Displacement Time History Data (변위 시계열 데이터를 이용한 교량거더의 Flutter 계수 추정기법에 관한 연구)

  • Lee, Jae Hyung;Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.525-533
    • /
    • 2001
  • The wind resistant design of long-span bridges has urged a special attention to the prevention of the flutter occurrence Therefore calculation of flutter derivatives is indispensable to this prediction. A used system identification method must identify all the flutter derivatives from noisy experimental data In this paper MITD(Modified Ibrahim Tim Domain) method and AKF (Adaptive Kalman Filter) method are applied to extract flutter derivatives from section-model tests. The robustness and reliability of proposal SI methods under a high signal-to-noise ratio is demonstrated through numerical simulation for windtunnel test.

  • PDF