• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.026 seconds

Robust Design of vehicle Intoner Noise using Taguchi method and Substructure Synthesis Method (다구찌법과 부분구조합성법을 이용한 차실소음 강건설계)

  • Kim, Hyo-Sig;Tanneguy, DE-KERDREL;Kim, Hee-Jin;Cho, Hyo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a robust design of vehicle interior noise using Taguchi method and a substructure synthesis method with a hybrid model. Firstly, the proposed method identifies the critical process of the concerned interior noise through a TPA (Transfer Path Analysis). Secondly, a strategy for a robust design is discussed, in which the major noise factor among uncertainties in the process is quality distribution of rubber bushes connecting a cradle and a trimmed body. Thirdly, a virtual test model fer the process is developed by applying a substructure synthesis method with a hybrid modeling approach. Fourthly, virtual tests are carried out according to the predefined tables of orthogonal array in Taguchi robust design process. The process was performed under 2 sub-steps. The first step is sensitivity analysis of 31 panels, and the other step is weight optimization of mass dampers on sensitive panels. Finally, two vehicles with the proposed countermeasures were validated. The proposed method reduces 87.5% of trials of measurements due to the orthogonal arrays and increases robustness by 8.6dB of S/N ratio and decreases $5\;dB(A){\sim}10\;dB(A)$ of interior noise in the concerned range of RPM.

  • PDF

Robust Speech Recognition with Car Noise based on the Wavelet Filter Banks (웨이블렛 필터뱅크를 이용한 자동차 소음에 강인한 고립단어 음성인식)

  • Lee, Dae-Jong;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2002
  • This paper proposes a robust speech recognition algorithm based on the wavelet filter banks. Since the proposed algorithm adopts a multiple band decision-making scheme, it performs robustness for noise as the presence of noisy severely degrades the performance of speech recognition system. For evaluating the performance of the proposed scheme, we compared it with the conventional speech recognizer based on the VQ for the 10-isolated korean digits with car noise. Here, the proposed method showed more 9~27% improvement of the recognition rate than the conventional VQ algorithm for the various car noisy environments.

Recursive Estimation of Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise (비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률의 반복적 추정법)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The biased zero-error probability and its related algorithms require heavy computational burden related with some summation operations at each iteration time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased Gaussian and impulsive noise. The proposed recursive method has significantly reduced computational burden regardless of sample size, contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased Gaussian and impulsive noise.

Optimum Solutions of Minimum Error Entropy Algorithm (최소 오차 엔트로피 알고리듬의 최적해)

  • Kim, Namyong;Lee, Gyoo-yeong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.19-24
    • /
    • 2016
  • The minimum error entropy (MEE) algorithm is known to be superior in impulsive noise environment. In this paper, the optimum solutions and properties of the MEE algorithm are studied in regard to the robustness against impulsive noise. From the analysis of the behavior of optimum weight and factors related with mitigation of influence from large errors, it is revealed that the magnitude controlled input entropy plays the main role of keeping optimum weight of MEE undisturbed from impulsive noise. In the simulation, the optimum weight of MEE is shown to be the same as that of MSE criterion.

Development of Reliability Design Methodology Using Accelerated Life Testing and Taguchi Method (가속 수명시험과 다구치 방법을 활용한 신뢰성설계 방법의 개발)

  • Kim, Min;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.407-414
    • /
    • 2002
  • The inherent reliability of a product is primarily determined in the design stage, and therefore, design engineers should be able to design reliability into the product in an efficient manner. Especially, the product should be designed such that its reliability is robust to various noise factors encountered in production and field environments. The Taguchi method can be effectively used for this purpose. However, there exist only a few attempts to integrate the Taguchi method with reliability design, and in addition, the existing works do not sufficiently consider the robustness and/or the distinction between noise and acceleration factors. This paper develops a unified approach to robust reliability design assuming that accelerated life tests are conducted at each combination of design and noise conditions. First, an experimental structure for assigning not only acceleration but also noise factors is presented. Second, the reliability at the use condition is estimated using the assumed accelerated life test model. Third, reliabilities are transformed into 'efforts' using an effort function which reflects the degree of difficulty involved in improving the reliability. Finally, an optimal setting of design parameters is determined based on the mean and standard deviation of the effort values. The above approach is illustrated with an example of a paper feeder design.

A Hybrid Control Development to Suppress the Noise in the Rectangular Enclosure using an Active/Passive Smart Foam Actuator

  • Kim Yeung-Shik;Kim Gi-Man;Roh Cheal-Ha;Fuller C. R.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.37-43
    • /
    • 2005
  • This paper presents a hybrid control algorithm for the active noise control in the rectangular enclosure using an active/passive foam actuator. The hybrid control composes of the adaptive feedforward with feedback loop in which the adaptive feedforward control uses the well-known filtered-x LMS(least mean square) algorithm and the feedback loop consists of the sliding mode controller and observer. The hybrid control has its robustness for both transient and persistent external disturbances and increases the convergence speed due to the reduced variance of the jiltered-x signal by adding the feedback loop. The sliding mode control (SMC) is used to incorporate insensitivity to parameter variations and rejection of disturbances and the observer is used to get the state information in the controller deign. An active/passive smart foam actuator is used to minimize noise actively using an embedded PVDF film driven by an electrical input and passively using an absorption-foam. The error path dynamics is experimentally identified in the form of the auto-regressive and moving-average using the frequency domain identification technique. Experimental results demonstrate the effectiveness of the hybrid control and the feasibility of the smart foam actuator.

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

Implementation of adaptive filters using fast hadamard transform (고속하다마드 변환을 이용한 적응 필터의 구현)

  • 곽대연;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1379-1382
    • /
    • 1997
  • We introduce a fast implementation of the adaptive transversal filter which uses least-mean-square(LMS) algorithm. The fast Hadamard transform(FHT) is used for the implementation of the filter. By using the proposed filter we can get the significant time reduction in computatioin over the conventional time domain LMS filter at the cost of a little performance. By computer simulation, we show the comparison of the propsed Hadamard-domain filter and the time domain filter in the view of multiplication time, mean-square error and robustness for noise.

  • PDF