• 제목/요약/키워드: Noise power spectrum (NPS)

Search Result 41, Processing Time 0.018 seconds

Evaluation of the Resolution Characteristics by Using ATS 535H Phantom for Ultrasound Medical Imaging (초음파 의료영상에서 ATS 535H 팬텀을 이용한 해상력 특성 평가)

  • Jung-Whan, Min;Hoi-Woun, Jeong;Hea-Kyung, Kang
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • This study was purpose to assessment of the resolution characteristics by using ATS 535H Basic quality assurance (QA) phantom for ultrasound. The ultrasound equipment was used Logiq P6 (Ultrasound, GE Healthcare System, Chicago, IL, USA). And the ultrasound transducer were used Convex 4C (4~5.5 MHz), Linear 11L (10~13 MHz), Sector 3SP (3~5.5 MHz) probe. As for the noise power spectrum (NPS) comparison results by using ATS 535H Basic QA ultrasound phantom and Convex 4C, Linear 11L, Sector 3SP probe. The NPS value of the Convex 4C probe image was 0.0049, Linear 11L probe image was 0.0049, Sector 3SP probe image was 0.1422 when the frequency is 1.0 mm-1. The modulation transfer function (MTF) comparison results by using ATS 535H Basic QA ultrasound phantom and Linear 11L probe the MTF value of the 3 cm focus image was 0.7511 and 4 cm focus image was 0.9001 when the frequency is 1.0 mm-1. This study was presented characteristics of spatial resolution a quantitative evaluation methods by using ultrasound medical images for QA of ultrasound medical QA phantom. The quality control (QC) for equipment maintenance can be efficiently used in the clinic due to the quantitative evaluation of the NPS and MTF as the standard methods. It is meaningful in that it is applied mutatis mutandis and presented the results of physical resolution characteristics of the ultrasound medical image.

Comparison of Horizontal and Vertical Noise Power Spectrum in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료 시 전자포털 영상장치를 이용한 잡음전력스펙트럼 수평 및 수직 측정비교)

  • Kim, Ki-Won;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kwon, Kyung-Tae;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.171-176
    • /
    • 2016
  • The quality assurance (QA) is very important for diagnostic field and radiation therapy field to evaluate the characteristic of devices. The purpose of this study was to compare different NPS methodologies results which are measuring NPS with regard to horizontal and vertical directions by using megavoltage X-ray energies. The NPS evaluation methods were applied to the International Electro-technical Commission standard (IEC 62220-1). The electronic portal imaging devices (EPID) devices such as Siemens BEAMVIEW$^{PLUS}$, Elekta iViewGT and Varian Clinac$^R$ iX aS1000 were used. NPS data were expressed by corresponding each frequency about average of noise value corresponding the each frequency, and NPS were evaluated quantitatively by totaling up the noise values of average frequency which are on horizontal and vertical directions. In NPS results for Elekta iViewGT, NPS of horizontal and vertical by using 4 methods were indicated the difference of 3~5% between horizontal and vertical direction. In the results of Siemens BEAMVIEW$^{PLUS}$ and Varian Clinac$^R$ iX aS1000, the NPS of horizontal and vertical direction were indicated the difference of 15% when averaging the whole values. This study were evaluated the NPS of each devices by totaling up the noise values of average frequency which are on horizontal and vertical directions suggesting the quantitative evaluation method using the data.

Image Quality Evaluation of Digital X-Ray Detector Using Amorphous Selenium Layer and Amorphous Silicon TFT Array (비정질 셀레늄층과 비정질 실리콘TFT배열을 사용하는 디지털 X-선 검출기의 영상특성 평가)

  • Kim, Chang-Won;Yoon, Jeong-Key;Kim, Jong-Hyo
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.219-226
    • /
    • 2008
  • In this study, we have conducted characterization of imaging performance for a flat panel digital X-ray detector using amorphous Selenium and a-Si TFT which was developed by the authors. The procedures for characterization were in concordance with internationally recommended standards such as IEC (international electrotechnical commission). The measures used for imaging performance characterization include response characteristic, modulation transfer function (MTF), detective quantum efficiency (DQE), noise power spectrum (NPS), and quantum limited performance. The measured DQEs at lowest and highest spatial frequencies were 40% and 25% respectively, which was superior to that of commercial products by overseas vendor. The MTF values were significantly superior to that of CR and indirect type DRs. The quantum limited performance showed the detector was limited by quantum noise at the entrance exposure level below 0.023 mR, which is sufficiently low for general X-ray examination.

  • PDF

Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료의 다양한 EPID 영상 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Cho, Jeong-Hee;Lee, Jea-Hee;Jung, Jae-Yong;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.451-461
    • /
    • 2015
  • In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) ${\times}$ 10 (length) ${\times}$ 1 (width) $cm^3$ and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeam$^{TM}$ (Varian), BEAMVIEW$^{PLUS}$ (Siemens), iViewGT (Elekta) and Clinac$^{(R)}$iX (Varian) were used. As for MTF results, TrueBeam$^{TM}$(Varian) flattening filter free(FFF) showed the highest values of $0.46mm^{-1}$ and $1.40mm^{-1}$ for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and $1mm^{-1}DQE$ of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID).

Study on the Physical Imaging Characteristics by Using Magnetic Resonance Imaging 1.5T (1.5T 자기공명영상을 이용한 물리적 영상 특성에 대한 연구)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Han, Ji-Hyun;Lee, Si-Nae;Park, Jang-Ho;Kim, Ki-Won;Kim, Hyun-Soo
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • This study was purpose to quantitative evaluation of noise power spectrum(NPS) and studied the quantitative evaluation and characteristics of modulation transfer function(MTF) by obtain the optimal edge image by using Coil in magnetic resonance imaging(MRI) equipment through Fujita theory using edge method. The MRI equipment was used (Tim AVANTO 1.5T, Siemense healthcare system, Germany) and the head matrix coil were 12channels(elements) receive coil. The NPS results of showed the best value of 0.004 based on the T2 Nyquist frequency of $1.0mm^{-1}$, and the MTF results of showed that the T1 and T2 values were generally better than the T1 CE and T1 CE FC values. The characteristics of this study were to explain the characteristic method of image quality evaluation in general. To present the quantitative evaluation process and results in the evaluation of MRI image characteristics in radiology.

Development of $14"{\times}8.5"$ active matrix flat-panel digital x-ray detector system and Imaging performance (평판 디지털 X-ray 검출기의 개발과 성능 평가에 관한 연구)

  • Park, Ji-Koon;Choi, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Seok, Dae-Woo;Nam, Sang Hee
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Digital radiographic systems based on solid-state detectors, commonly referred to as flat-panel detectors, are gaining popularity in clinical practice. Large area, flat panel solid state detectors are being investigated for digital radiography. The purpose of this work was to evaluate the active matrix flat panel digital x-ray detectors in terms of their modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). In this paper, development and evaluation of a selenium-based flat-panel digital x-ray detector are described. The prototype detector has a pixel pitch of $139\;{\mu}m$ and a total active imaging area of $14{\times}8.5\;inch^2$, giving a total 3.9 million pixels. This detector include a x-ray imaging layer of amorphous selenium as a photoconductor which is evaporated in vacuum state on a TFT flat panel, to make signals in proportion to incident x-ray. The film thickness was about $500\;{\mu}m$. To evaluate the imaging performance of the digital radiography(DR) system developed in our group, sensitivity, linearity, the modulation transfer function(MTF), noise power spectrum (NPS) and detective quantum efficiency(DQE) of detector was measured. The measured sensitivity was $4.16{\times}10^6\;ehp/pixel{\cdot}mR$ at the bias field of $10\;V/{\mu}m$ : The beam condition was 41.9\;KeV. Measured MTF at 2.5\;lp/mm was 52%, and the DQE at 1.5\;lp/mm was 75%. And the excellent linearity was showed where the coefficient of determination ($r^2$) is 0.9693.

  • PDF

Characteristics of a new cone beam computed tomography

  • Park, Chang-Seo;Kim, Kee-Deog;Park, Hyok;Jeong, Ho-Gul;Lee, Sang-Chul
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.205-209
    • /
    • 2007
  • Purpose: To determine the physical properties of a newly developed cone beam computed tomography (CBCT). Materials and Methods: We measured and compared the imaging properties for the indirect-type flat panel detector (FPD) of a new CBCT and the single detector array (SDA) of conventional helical CT (CHCT). Results: First, the modulation transfer function (MTF) of the CBCT were superior to those of the CHCT. Second, the noise power spectrum (NPS) of the CBCT were worse than those of the CHCT. Third, detective quantum efficiency (DQE) of the indirect-type CBCT were worse than those of the CHCT at lower spatial frequencies, but were better at higher spatial frequencies. Although the comparison of contrast-to-noise ratio (CNR) was estimated in the limited range of tube current, CNR of CBCT were worse than those of CHCT. Conclusion: This study shows that the indirect-type FPD system may be useful as a CBCT detector because of high resolution.

  • PDF

Evaluation of Image Quality by Using a Tungsten Edge Block in a Megavoltage (MV) X-ray Imaging (텅스텐 엣지 블록을 이용하여 Megavoltage (MV) 영상의 질 평가)

  • Min, Jung-Whan;Son, Jin-Hyun;Kim, Ki-Won;Lee, Jung-Woo;Son, Soon-Yong;Back, Geum-Mun;Kim, Jung-Min;Kim, Yeon-Rae;Jung, Jae-Yong;Kim, Sang-Young;Lee, Do-Wan;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.154-161
    • /
    • 2012
  • Digital Radiography (DR) has rapidly developed in megavoltage X-ray imaging (MVI). Thus, a very simple and general quality assurance (QA) method is required. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) for MVI using general QA method and computed radiography (CR) device. We used tungsten edge block with $19{\times}10{\times}1cm^3$ thickness and 6MV energy. For detector, CR-IP (image plate), CR-IP-lead, the CR-IP-back (lanex TM fast back screen), CR-IP-front (lanex TM fast front screen) were used and pre-sampling MTF was calculated. The MTF of CR-IP-front showed the highest value with 1.10 lp/mm although the CR-IP showed the only 0.70 lp/mm. The best NPS was observed in CR-IP front screen. According to the increase in spatial frequency, our results showed that DQE was approximately 1.0 cycles/mm. The present study demonstrates that the QA method with our home-made edge block can be used to evaluate MTF, NPS and DQE for MVI.

Construction and Performance Evaluation of Digital Radiographic System (이동형 디지털 X선 촬영장치의 구축 및 성능평가)

  • Cho, Hyo-Min;Nam, So-Ra;Lee, Chang-Lae;Jung, Ji-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • Current digital radiography systems are rapidly glowing in clinical applications. The purpose of this study was to evaluate the characteristics of a mobile digital radiographic system. The performance of the mobile DR system was evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Measurements were made on a LISTEM Mobix-1000 generator and a Teleoptic PRA Alpha-R4000 detector. Imaging characteristics were measured for these two systems using the IEC-61267 defined RQA5 (kVp: 74, additional filtration: 21 mmAl) radiographic condition. The MTF at 10% was measured as 2.4 cycles/mm and the DQE(0) values for radiation exposure 0.19, 0.5, and 1.3 mR were measured as 54%, 55%, and 76%, respectively. The NPS curves gradually decreased at high spatial frequencies. This high DQE at low frequencies, may be useful for low frequency information. The results suggested that mobile DR system could be integrated with emergency ambulance system in teleradiologic imaging applications.

  • PDF

Assessment of dose effects on image quality at chest computed radiography (흉부 CR 영상에서 선량이 화질에 미치는 영향에 대한 평가)

  • Kang, Bo-Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.421-426
    • /
    • 2011
  • This research was accomplished to assess dose effects on image quality at computed radiography (CR). The ultimate target of the research was finding optimized exposure that provides necessary image quality for the clinical chest diagnosis. Modulation transfer function (MTF), normalized noise power spectrum (NNPS), and Noise equivalent quanta (NEQ) corresponding to the different doses were measured for the assessment of image quality. The preparation of "edge test device" used in MTF measurement and experimental geometry setup were followed by the recommendations of International Electrotechnical Commission (IEC). The experimental results show the necessary image quality can be achieved even at a half of the automatic exposure control (AEC) setting dose for chest diagnosis. It means that the patient exposure can be reduced dramatically by using optimized dose.