• Title/Summary/Keyword: Noise matching

Search Result 549, Processing Time 0.028 seconds

Implementation of Readout IC for $8\times8$ UV-FPA Detector ($8\times8$ UV-PPA 검출기용 Readout IC의 설계 및 제작)

  • Kim, Tae-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.503-510
    • /
    • 2006
  • Readout circuit is to convert signal occurred in a defector into suitable signal for image signal processing. In general, it has to possess functions of impedance matching with perception element, amplification, noise reduction and cell selection. It also should satisfies conditions of low-power, low-noise, linearity, uniformity, dynamic range, excellent frequency-response characteristic, and so on. The technical issues in developing image processing equipment for focal plane way (FPA) can be categorized as follow: First, ultraviolet (UV) my detector material and fine processing technology. Second, ReadOut IC (ROIC) design technology to process electric signal from detector. Last, package technology for hybrid bonding between detector and ROIC. ROIC enables intelligence and multi-function of image equipment. It is a core component for high value added commercialization ultimately. Especially, in development of high-resolution image equipment ROIC, it is necessary that high-integrated and low-power circuit design technology satisfied with design specifications such as detector characteristic, signal dynamic range, readout rate, noise characteristic, ceil pitch, power consumption and so on. In this paper, we implemented a $8\times8$ FPA prototype ROIC for reduction of period and cost. We tested unit block and overall functions of designed $8\times8$ FPA ROIC. Also, we manufactured ROIC control and image boards, and then were able to verify operation of ROIC by confirming detected image from PC's monitor through UART(Universal Asynchronous Receiver Transmitter) communication.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

An improved crystal rotation method for simultaneous measurement of pretilt angle and thickness of a liquid crystal layer (액정셀의 선경사각과 액정층의 두께를 함께 재는 개선된 결정회전법)

  • Son, Gong-Sook;Park, Chan;Park, Hee-Gap;Kim, Jin-Seung;Rho, Bong-Gyu;Lee, Hyong-Jong;Kim, Jae-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.213-218
    • /
    • 1996
  • An improved crystal rotation method with increased accuracy and range is proposed and experimentally verified for simultaneous measurement of molecular tilt angle and thickness of LC (liquid crystal) layer of an LC cell. The improvement is brought about by direct determination of difference between phases instead of intensities of two components of orthogonal linear polarization of the light passing through an LC cell filled with uniformly oriented molecules. By comparing the experimental data with theoretical result the thickness and pretilt angle are determined more precisely. Further improvement is brought about by use of a liquid gate filled with an index matching liquid in which the LC cell is immersed. Because of the index matching liquid reflection of light at the surfaces of an LC cell almost completely disappears and the range of angle of refraction in the LC layer increases significantly, which gives rise to increased signal to noise ration as well as decreased statistical error. With this improvement precise measurement for either very thin (<10 ${\mu}{\textrm}{m}$) and/or higher pretilt angle($\geq$10$^{\circ}$) LC cells become possible.

  • PDF

Study on an Image Reconstruction Algorithm for 3D Cartilage OCT Images (A Preliminary Study) (3차원 연골 광간섭 단층촬영 이미지들에 대한 영상 재구성 알고리듬 연구)

  • Ho, Dong-Su;Kim, Ee-Hwa;Kim, Yong-Min;Kim, Beop-Min
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.62-71
    • /
    • 2009
  • Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the noninvasive assessment of biological tissues. However, OCT images difficult to analyze due to speckle noise. In this paper, we tested various image processing techniques for speckle removal of human and rabbit cartilage OCT images. Also, we distinguished the images which get with methods of image segmentation for OCT images, and found the most suitable method for segmenting an image. And, we selected image segmentation suitable for OCT before image reconstruction. OCT was a weak point to system design and image processing. It was a limit owing to measure small a distance and depth size. So, good edge matching algorithms are important for image reconstruction. This paper presents such an algorithm, the chamfer matching algorithm. It is made of background for 3D image reconstruction. The purpose of this paper is to describe good image processing techniques for speckle removal, image segmentation, and the 3D reconstruction of cartilage OCT images.

  • PDF

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF

An Algorithm for Filtering False Minutiae in Fingerprint Recognition and its Performance Evaluation (지문의 의사 특징점 제거 알고리즘 및 성능 분석)

  • Yang, Ji-Seong;An, Do-Seong;Kim, Hak-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.12-26
    • /
    • 2000
  • In this paper, we propose a post-processing algorithm to remove false minutiae which decrease the overall performance of an automatic fingerprint identification system by increasing computational complexity, FAR(False Acceptance Rate), and FRR(False Rejection Rate) in matching process. The proposed algorithm extracts candidate minutiae from thinned fingerprint image. Considering characteristics of the thinned fingerprint image, the algorithm selects the minutiae that may be false and located in recoverable area. If the area where the selected minutiae reside is thinned incorrectly due to noise and loss of information, the algorithm recovers the area and the selected minutiae are removed from the candidate minutiae list. By examining the ridge pattern of the block where the candidate minutiae are found, true minutiae are recovered and in contrast, false minutiae are filtered out. In an experiment, Fingerprint images from NIST special database 14 are tested and the result shows that the proposed algorithm reduces the false minutiae extraction rate remarkably and increases the overall performance of an automatic fingerprint identification system.

  • PDF

A Depth-map Coding Method using the Adaptive XOR Operation (적응적 배타적 논리합을 이용한 깊이정보 맵 코딩 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.274-292
    • /
    • 2011
  • This paper proposes an efficient coding method of the depth-map which is different from the natural images. The depth-map are so smooth in both inner parts of the objects and background, but it has sharp edges on the object-boundaries like a cliff. In addition, when a depth-map block is decomposed into bit planes, the characteristic of perfect matching or inverted matching between bit planes often occurs on the object-boundaries. Therefore, the proposed depth-map coding scheme is designed to have the bit-plane unit coding method using the adaptive XOR method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (for example, H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. The experimental results show that the proposed algorithm improves the average bit-rate savings as 11.8 % ~ 20.8% and the average PSNR (Peak Signal-to-Noise Ratio) gains as 0.9 dB ~ 1.5 dB in comparison with the H.264/AVC coding scheme. And the proposed algorithm improves the average bit-rate savings as 7.7 % ~ 12.2 % and the average PSNR gains as 0.5 dB ~ 0.8 dB in comparison with the adaptive block-based depth-map coding scheme. It can be confirmed that the proposed method improves the subjective quality of synthesized image using the decoded depth-map in comparison with the H.264/AVC coding scheme. And the subjective quality of the proposed method was similar to the subjective quality of the adaptive block-based depth-map coding scheme.

A Study on Motion Estimator Design Using DCT DC Value (DCT 직류 값을 이용한 움직임 추정기 설계에 관한 연구)

  • Lee, Gwon-Cheol;Park, Jong-Jin;Jo, Won-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.258-268
    • /
    • 2001
  • The compression method is necessarily used to send the high quality moving picture that contains a number of data in image processing. In the field of moving picture compression method, the motion estimation algorithm is used to reduce the temporal redundancy. Block matching algorithm to be usually used is distinguished partial search algorithm with full search algorithm. Full search algorithm be used in this paper is the method to compare the reference block with entire block in the search window. It is very efficient and has simple data flow and control circuit. But the bigger the search window, the larger hardware size, because large computational operation is needed. In this paper, we design the full search block matching motion estimator. Using the DCT DC values, we decide luminance. And we apply 3 bit compare-selector using bit plane to I(Intra coded) picture, not using 8 bit luminance signals. Also it is suggested that use the same selective bit for the P(Predicted coded) and B(Bidirectional coded) picture. We compare based full search method with PSNR(Peak Signal to Noise Ratio) for C language modeling. Its condition is the reference block 8$\times$8, the search window 24$\times$24 and 352$\times$288 gray scale standard video images. The result has small difference that we cannot see. And we design the suggested motion estimator that hardware size is proved to reduce 38.3% for structure I and 30.7% for structure II. The memory is proved to reduce 31.3% for structure I and II.

  • PDF

A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame (이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun;Wee, Young-Cheul;Kimn, Ha-Jine
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of the previous block. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. In this paper, we propose the block-matching motion estimation using an adaptive initial search point by the predicted motion information from the same block of the previous frame. And the first search point of the proposed algorithm is moved an initial point on the location of being possibility and the searching process after moving the first search point is processed according to the fast search pattern. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved UP to the 1.05dB as depend on the image sequences and improved about 0.33~0.37dB on an average. Search times are reduced about 29~97% than the other fast search algorithms. Simulation results also show that the performance of the proposed scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification (영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구)

  • Moon, Sujin;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.63-70
    • /
    • 2018
  • Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.