• Title/Summary/Keyword: Noise in a Naval Vessel

Search Result 36, Processing Time 0.025 seconds

Study on the Shaft-Strut Design in the Initial Design Stage (초기설계 단계에서의 스트럿 설계 고찰)

  • Lee, Hwa-Joon;Jang, Hag-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.114-119
    • /
    • 2004
  • For passenger vessels, twin shaft types in propulsion system is generally adopted to provide a high-speed performance in low draught due to restricted operating condition in harbors or water channels. Struts of twin open shaft type support the shafts, bearings, and propellers. Therefore, strut design is needed to consider not only hydrodynamic performance but also structural and noise/vibration performance, In this paper, considerations in strut design at the initial design stage have been discussed based on existing references, numerical calculations, and their comparisons. Also, the strut design of a RoPax ferry has been carried out at the initial design stage, for an example.

Shock Resistance Analysis of a Propulsion Motor for Naval Vessels (함정용 추진전동기의 내충격성 해석)

  • Bae, Sung-Wook;Hong, Chin-Suk;Jeong, Weui-Bong;Park, Young-Su;Bin, Jae-Goo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1183-1189
    • /
    • 2010
  • Shock-resistance test for a real equipment for a normal vessel is one of the difficult problem in many cases because of terrible cost and weight. An analysis technique to evaluate the shock resistance in a design stage is necessary, instead In this paper, the process to evaluate the shock resistance of a propulsion motor for naval vessels was presented based on German navy's BV043 regulation. The shock signal to impose the equipment under the test was first evaluated, and was then applied to the structural FE model of the equipment. From the transient FEA, the time history of von-Mises stress was obtained by the mode superposition method. The shock resistance was evaluated using the peak value of the von-Mises stress.

A Study on Full-Scale Crabbing Test Using Dynamic Positioning System (동적위치제어시스템을 이용한 선박의 실선스케일 횡이동시험에 관한 연구)

  • Park, Jong-Yong;Lee, Jun-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.345-352
    • /
    • 2020
  • This study aims to investigate the crabbing motion of the research vessel "NARA" by full-scale maneuvering trials. The crabbing test method refers to ITTC recommended procedures and guidelines. In order to minimize the fluctuation of the heading angle due to the external force acting on the hull during the pure lateral motion, the tests are conducted using the dynamic positioning system applied to the ship. The test results are analyzed by applying a low-pass filter to remove the noise included in the measurement data. Three conditions are set to define the steady state of crabbing motion. The index to be derived from the crabbing test is quantitatively presented. The ship is confirmed to be capable of the lateral motion of up to 0.844m/s in Beaufort 3.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

A Study on the Computer Program for the Shipboard Noise Prediction - using Statistical Energy Analysis - (선박 소음 예측 전산 프로그램의 개발에 관한 연구 -통계적 에너지 해석법을 이용한-)

  • Sa-Soo Kim;Ku-Kyun Shin;Hong-Gi Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.293-306
    • /
    • 1991
  • During the last few years recommendations or regulations concerning permissible noise levels on shirts have been issued by the authorities in most countries. For these reasons the need for useful and accurate noise prediction computer programs has been emphasized. A noise prediction program can make it possible to find the most economical solution to achieve a certain noise requirement. This paper attempts to develop a noise prediction computer program using statistical energy analysis(SEA). In this paper, the SEA is used to predict the sound transmission loss for airborne noise and the vibration amplitude of the panel consisting of ship spaces such as floor, wall, and ceiling for structureborne noise. And in order to verify the prediction, a small passenger vessel, G/T120 tons, is selected. It has been shown that the prediction is capable of giving results in good practical agreement with measurements and therefore it is useful for predicting the nolle levels in ships and establishing the countermeasures at early design stage.

  • PDF

Analysis for the Effect of the Misalignment of the Power Line from the Displacement Caused by the Ship Motion of the Main Propulsion System (선체운동에 의한 주추진계의 변위가 동력축의 축 어긋남에 미치는 영향 분석)

  • Han, Hyung-Suk;Lee, Kyung-Hyun;Cho, Heung-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Since the engine and reduction gear in a naval vessel are usually supported by the mounting system separately, the misalignment between the input shaft of the reduction gear and the output shaft of the engine should occur caused by ship motion. In this study, this misalignment is estimated from the linear static analysis assuming that the phase of movements of the engine and reduction gear at low frequency range is same and the dynamic effect is not affect to them. Through comparing the relative displacement of the engine and reduction gear calculated from linear static analysis to that from dynamic analysis as well as experiment, the assumption in this study could be verified.

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

Comparison and Analysis of Fuel Consumption by CODAD, CODLOD and CODLAD System for Combat Support Ship (군수지원함의 CODAD, CODLOD 및 CODLAD 추진체계에 따른 연료 소비량 비교 및 분석)

  • Kim, Min-wook;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1049-1059
    • /
    • 2017
  • After patrol corvett Cheonan was hit and sank on duty, the Republic of Korea Navy has tried to install hybrid propulsion system on naval ship to reduce vibration and noise problems during navigation. The hybrid propulsion system has advantage that propulsion motor can be propelled in low speed operation of the vessel. This can be a better quietness than a mechanical propulsion system which consists of a conventional internal combustion engines. And more economical operation is possible by using a propulsion motor in a low speed operation where a fuel efficiency of the internal combustion engine is poor. In this paper, we set up virtual ship on the basis of a combat support ship in the Republic of Korea Navy, economically compared and analyzed fuel consumption between conventional and hybrid propulsion system. As a result, it was confirmed that the fuel efficiency of hybrid propulsion system which use electric motor had been relatively improved.

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.