• Title/Summary/Keyword: Noise Attack

Search Result 136, Processing Time 0.027 seconds

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (II) - Variation of Leakage Vortex with Tip Clearance and Attack Angle - (축류 회전차 익말단 틈새유동에 대한 수치해석(II) - 틈새변화 및 영각변화에 따른 누설와류의 변화 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1106-1112
    • /
    • 1999
  • Substantial losses behind axial flow rotor are generated by the wake, various vortices in the hub region and the tip leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip is one of the main causes of the reduction of performance, generation of noise and aerodynamic vibration in downstream. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The numerical technique was based on SIMPLE algorithm using standard $k-{\varepsilon}$ model(WFM) and Launder & Sharma's Low Reynolds Number $k-{\varepsilon}$ model(LRN). Through calculations, the effects of tip clearance and attack angle on the 3-dimensional flow fileds behind a rotor and leakage flow/vortex were investigated. The presence of tip leakage vortex, loci of vortex center and its behavior behind the rotor for various tip clearances and attack angles was described well by calculation.

A Calculation Method of Source Level of Underwater Transient Noise by Frequency Band (주파수 대역별 수중 순간소음 음원준위 산출 기법)

  • Choi, Jae-Yong;Oh, Jun-Seok;Lee, Phil-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.528-533
    • /
    • 2010
  • This paper describes a calculation method of source level of a ship transient noise, which is one of the important elements for the ship detection. Aim of transient noise measurements is to evaluate of acoustic energy due to singular occurrence, which is therefore defined as non-periodic and short termed events like an attack periscope, a rudder and a torpedo door. In generally, in the case of randomly spaced impulse, the spectrum becomes a broadband random noise with no distinctive pattern. Therefore, frequency analysis is not particularly revealing for type of signal. In the paper, it is performed in time domain to analyze a transient noise. However, a source level of transient noise is required an investigation for multiple frequency band. So, in order to calculate a source level of transient noise, a design of exponential weighting function, convolution, band pass filtering, peak detection, root mean square, and parameter compensation are applied. The effectiveness of this calculation scheme is studied through computer simulations and a sea test. Furthermore, an application of the method is applied in a real case.

Protocol-Aware Radio Frequency Jamming inWi-Fi and Commercial Wireless Networks

  • Hussain, Abid;Saqib, Nazar Abbas;Qamar, Usman;Zia, Muhammad;Mahmood, Hassan
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.397-406
    • /
    • 2014
  • Radio frequency (RF) jamming is a denial of service attack targeted at wireless networks. In resource-hungry scenarios with constant traffic demand, jamming can create connectivity problems and seriously affect communication. Therefore, the vulnerabilities of wireless networks must be studied. In this study, we investigate a particular type of RF jamming that exploits the semantics of physical (PHY) and medium access control (MAC) layer protocols. This can be extended to any wireless communication network whose protocol characteristics and operating frequencies are known to the attacker. We propose two efficient jamming techniques: A low-data-rate random jamming and a shot-noise based protocol-aware RF jamming. Both techniques use shot-noise pulses to disrupt ongoing transmission ensuring they are energy efficient, and they significantly reduce the detection probability of the jammer. Further, we derived the tight upper bound on the duration and the number of shot-noise pulses for Wi-Fi, GSM, and WiMax networks. The proposed model takes consider the channel access mechanism employed at the MAC layer, data transmission rate, PHY/MAC layer modulation and channel coding schemes. Moreover, we analyze the effect of different packet sizes on the proposed jamming methodologies. The proposed jamming attack models have been experimentally evaluated for 802.11b networks on an actual testbed environment by transmitting data packets of varying sizes. The achieved results clearly demonstrate a considerable increase in the overall jamming efficiency of the proposed protocol-aware jammer in terms of packet delivery ratio, energy expenditure and detection probabilities over contemporary jamming methods provided in the literature.

A Study on The Measurement of Vibration Characteristics by Iteration of The Rotor Blade and The Front Vortex (로터 블레이드와 전방와류의 상호작용에 의한 진동특성 측정에 관한 연구)

  • Lee, Myoung-Ok;Choi, Jong-Soo;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.170-175
    • /
    • 2005
  • The focus of this paper is to observe the aerodynamic and vibration characteristics of the NACA0012 blade(AR=16.6) fixed on the lower surface of the wind tunnel, by changing air speed and the blade's angle of attack. After fixing a slit-typed vortex generator on the front of the blade, it could be observed that the vibrational characteristics caused by interactions between vortex and blade through the 5-hole pilot tubes. And, also, two different blades in stiffness had been prepared for observing those characteristics above in this experiment. The results were compared with the given stiffness of blade, as well. According to the results, it is clear to recognize that the vibration spectrum increases while air speed and angle of attack increase, and, also, less stiffness means bigger vibration spectrum.

  • PDF

A study on the estimation method for the bandwidth of the radar range tracker using the receiver parameters in electronic warfare (전자전에서 레이더 수집변수를 활용한 레이더 거리추적 대역폭 추정방법에 관한 연구)

  • Jo, Jeil;Kim, So-yeon;Lee, Jung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.357-358
    • /
    • 2018
  • The track radar use the range track loop to track the target range. The bandwidth of the radar range tracker can be determined by tradeoff according to signal to noise ratio and the target range. On the other hand, electronic warfare is carried out to prevent the radar from tracking targets by electronic attack. The deception or noise jamming in electronic warfare can be performed to interfere with the range track loop of the radar. In order to efficiently perform electronic warfare, the bandwidth in radar tracking loop is estimated and can be used for electronic attack. To do this, we have studied the method of estimating the bandwidth of radar tracking loop using the variables that can be gathered in electronic warfare.

  • PDF

An Efficient Selective Method for Audio Watermarking Against De-synchronization Attacks

  • Mushgil, Baydaa Mohammad;Adnan, Wan Azizun Wan;Al-hadad, Syed Abdul-Rahman;Ahmad, Sharifah Mumtazah Syed
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.476-484
    • /
    • 2018
  • The high capacity audio watermarking algorithms are facing a main challenge in satisfying the robustness against attacks especially on de-synchronization attacks. In this paper, a robust and a high capacity algorithm is proposed using segment selection, Stationary Wavelet Transform (SWT) and the Quantization Index Modulation (QIM) techniques along with new synchronization mechanism. The proposed algorithm provides enhanced trade-off between robustness, imperceptibility, and capacity. The achieved watermarking improves the reliability of the available watermarking methods and shows high robustness towards signal processing (manipulating) attacks especially the de-synchronization attacks such as cropping, jittering, and zero inserting attacks. For imperceptibility evaluation, high signal to noise ratio values of above 22 dB has been achieved. Also subjective test with volunteer listeners shows that the proposed method has high imperceptibility with Subjective Difference Grade (SDG) of 4.76. Meanwhile, high rational capacity up to 176.4 bps is also achieved.

A Proposal of Wavelet-based Differential Power Analysis Method (웨이볼릿 기반의 차분전력분석 기법 제안)

  • Ryoo, Jeong-Choon;Han, Dong-Guk;Kim, Sung-Kyoung;Kim, Hee-Seok;Kim, Tae-Hyun;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.27-35
    • /
    • 2009
  • Differential Power Analysis (DPA) based on the statistical characteristics of collected signals has been known as an efficient attack for uncovering secret key of crypto-systems. However, the attack performance of this method is affected very much by the temporal misalignment and the noise of collected side channel signals. In this paper, we propose a new method based on wavelet analysis to surmount the temporal misalignment and the noise problem simultaneously in DPA. The performance of the proposed method is then evaluated while analyzing the power consumption signals of Micro-controller chips during a DES operation. The experimental results show that our proposed method based on wavelet analysis requires only 25% traces compared with those of the previous preprocessing methods to uncover the secret key.

Improved SITM Attack on the PRESENT Blockcipher (블록암호 PRESENT에 대한 향상된 SITM 공격)

  • Park, Jonghyun;Kim, Hangi;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.155-162
    • /
    • 2022
  • The SITM (See-In-The-Middle) attack proposed in CHES 2020 is a type of analysis technique that combines differential cryptanalysis and side-channel analysis, and can be applied even in a harsh environment with a low SNR (Signal-to-Noise Ratio). This attack targets partial 1st or higher order masked block cipher, and uses unmasked middle round weakness. PRESENT is a lightweight blockcipher proposed in CHES 2007, designed to be implemented efficiently in a low-power environment. In this paper, we propose SITM attacks on 14-round masked implementation of PRESENT while the previous attacks were applicable to 4-round masked implementation of PRESENT. This indicates that PRESENT has to be implemented with more than 16-round masking to be resistant to our attacks.

Adversarial Attacks on Reinforce Learning Model and Countermeasures Using Image Filtering Method (강화학습 모델에 대한 적대적 공격과 이미지 필터링 기법을 이용한 대응 방안)

  • Seungyeol Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1047-1057
    • /
    • 2024
  • Recently, deep neural network-based reinforcement learning models have been applied in various advanced industrial fields such as autonomous driving, smart factories, and home networks, but it has been shown to be vulnerable to malicious adversarial attack. In this paper, we applied deep reinforcement learning models, DQN and PPO, to the autonomous driving simulation environment HighwayEnv and conducted three adversarial attacks: FGSM(Fast Gradient Sign Method), BIM(Basic Iterative Method), PGD(Projected Gradient Descent) and CW(Carlini and Wagner). In order to respond to adversarial attack, we proposed a method for deep learning models based on reinforcement learning to operate normally by removing noise from adversarial images using a bilateral filter algorithm. Furthermore, we analyzed performance of adversarial attacks using two popular metrics such as average of episode duration and the average of the reward obtained by the agent. In our experiments on a model that removes noise of adversarial images using a bilateral filter, we confirmed that the performance is maintained as good as when no adversarial attack was performed.

Performance Enhancement of Differential Power Analysis Attack with Signal Companding Methods (신호 압신법을 이용한 차분전력분석 공격성능 향상)

  • Ryoo, Jeong-Choon;Han, Dong-Guk;Kim, Sung-Kyoung;Kim, Hee-Seok;Kim, Tae-Hyun;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2008
  • Among previous Side Channel Analysis (SCA) methods, Differential Power Analysis (DPA) based on the statistical characteristics of collected signals has been known as an efficient attack for uncovering secret key of cryptosystems. However, the attack performance of this method is affected very much by the temporal misalignment and noise of collected side channel signals. In this paper, we propose a new method to surmount the noise problem in DPA. The performance of the proposed method is then evaluated while analyzing the power consumption signals of Micro-controller chips during a DES operation. Its performance is then compared to that of the original DPA in the time and frequency domains. When we compare the experimental results with respect to the needed number of traces to uncover the secret key, our proposed method shows the performance enhancement 33% in the time domain and 50% in the frequency domain.