고화질 이미지는 정보가 많아 민감한 데이터는 민간기업이나 군사용 암호화에 의해 저장된다. 암호화된 영상은 비밀키를 통해서만 해독이 가능하지만, 일부 픽셀 데이터를 임의의 값으로 덮어쓰는 공유 공격 및 노이즈 공해 공격 기법의 공격을 받아도 원본 데이터는 보존할 수 없다. 중요한 데이터는 공격에 대한 복구 방법에 대한 대책이 더 필요하다는 것이다. 본 논문에서는 난수 발전기 PingPong 256과 셔플링 방법을 제안한다. PingPong 256은 영상이고 영상 암호화는 더 빠르게 수행할 수 있다. 또한 셔플링 방식은 화소를 재조정하여 Shear attack과 Noise pollution attack 기법에 저항하는 것이다. 다음으로 제안한 PingPong256을 SP800-22로 검사하고 다양한 노이즈에 대한 내성을 테스트하고 셔플 링 방식이 적용된 이미지가 Anti-shear attack과 Anti-noise pollution attack을 만족하는지 검증했다.
Self-noise from the rotor blade of the UH-1H Helicopter is obtained numerically by using the Brooks' empirical noise model. All of the five noise sources are compared with each other in frequency domain. From the calculated results the bluntness noise reveals dominant noise sources at small angel of attack, whereas the separation noise shows main noise term with gradually increasing angel of attack. From the results of two different tip Mach numbers with the change of angel of attack, the OASPLs at M = 0.8 show about 15dB larger than those at M = 0.4.
본 논문에서는 영상 데이터에 대한 적대적 공격으로부터 생성된 적대적 예제로 인하여 발생할 수 있는 딥러닝 시스템의 오분류를 방어하기 위한 방법으로 분류기의 입력 영상에 백색 잡음을 가산하는 방법을 제안하였다. 제안된 방법은 적대적이든 적대적이지 않던 구분하지 않고 분류기의 입력 영상에 백색 잡음을 더하여 적대적 예제가 분류기에서 올바른 출력을 발생할 수 있도록 유도하는 것이다. 제안한 방법은 FGSM 공격, BIM 공격 및 CW 공격으로 생성된 적대적 예제에 대하여 서로 다른 레이어 수를 갖는 Resnet 모델에 적용하고 결과를 고찰하였다. 백색 잡음의 가산된 데이터의 경우 모든 Resnet 모델에서 인식률이 향상되었음을 관찰할 수 있다. 제안된 방법은 단순히 백색 잡음을 경험적인 방법으로 가산하고 결과를 관찰하였으나 에 대한 엄밀한 분석이 추가되는 경우 기존의 적대적 훈련 방법과 같이 비용과 시간이 많이 소요되는 적대적 공격에 대한 방어 기술을 제공할 수 있을 것으로 사료된다.
딥뉴럴네트워크는 머신러닝 분야 중 이미지 인식, 사물 인식 등에 좋은 성능을 보여주고 있다. 그러나 딥뉴럴네트워크는 적대적 샘플(Adversarial example)에 취약점이 있다. 적대적 샘플은 원본 샘플에 최소한의 noise를 넣어서 딥뉴럴네트워크가 잘못 인식하게 하는 샘플이다. 그러나 이러한 적대적 샘플은 원본 샘플간의 최소한의 noise을 주면서 동시에 딥뉴럴네트워크가 잘못 인식하도록 하는 샘플을 생성하는 데 시간이 많이 걸린다는 단점이 있다. 따라서 어떠한 경우에 최소한의 noise가 아니더라도 신속하게 딥뉴럴네트워크가 잘못 인식하도록 하는 공격이 필요할 수 있다. 이 논문에서, 우리는 신속하게 딥뉴럴네트워크를 공격하는 것에 우선순위를 둔 신속한 오인식 샘플 생성 공격을 제안하고자 한다. 이 제안방법은 원본 샘플에 대한 왜곡을 고려하지 않고 딥뉴럴네트워크의 오인식에 중점을 둔 noise를 추가하는 방식이다. 따라서 이 방법은 기존방법과 달리 별도의 원본 샘플에 대한 왜곡을 고려하지 않기 때문에 기존방법보다 생성속도가 빠른 장점이 있다. 실험데이터로는 MNIST와 CIFAR10를 사용하였으며 머신러닝 라이브러리로 Tensorflow를 사용하였다. 실험결과에서, 제안한 오인식 샘플은 기존방법에 비해서 MNIST와 CIFAR10에서 각각 50%, 80% 감소된 반복횟수이면서 100% 공격률을 가진다.
Even if transmissions through normal channel between ubiquitous devices and terminal readers are encrypted, any extra sources of information retrieved from encrypting module can be exploited to figure out the key parameters, so called side channel attack. Since side channel attacks are based on statistical methods, making side channel signal weak or complex is the proper solution to prevent the attack. Among many countermeasures, shielding the electromagnetic signal and adding noise to the EM signal were examined by applying different thicknesses of thin films of ferroelectric (BTO) and conductors (copper and gold). As a test vehicle, chip antenna was utilized to see the change in radiation characteristics: return loss and gain. As a result, the ferroelectric BTO showed no recognizable effect on both shielding and adding noise. Cu thin film showed increasing shielding effect with thickness. Nanometer Au exhibited possibility in adding noise by widening of bandwidth and red shifting of resonating frequencies.
Automobile cooling fans are operated with a radiator module. To design low noise, high performance cooling fan, radiator resistance should be considered in the design process. The system (radiator) resistance reduces axial velocity and increases effective angle of attack. This increasing effective angle of attack mechanism causes blade stall, performance decrease and noise increase. In this paper, To analyze fan performance, freewake and 3D CFD calculations are used To design high performance fan with consideration of system resistance, optimal twist concept is applied through momentum and blade element theory. To predict fan noise, empirical formula and acoustic analogy methods are used.
NFC, RFID 등의 무선 기술이 발전하면서 기기간의 데이터 전달이 용이해지고 있다. 사용자는 여러 개의 복잡한 비밀번호를 외우고 입력하는 대신 항상 소지하고 있는 카드나 휴대폰을 이용하여 간편하게 자신을 인증함으로써 건물에 출입하거나, 보안 자료에 접근하고, 결제를 할 수 있게 되었다. 그러나 최근 릴레이 공격(relay attack)의 출현으로 편리한 토큰 기반(something you have) 인증의 안전성이 위협받고 있다. 릴레이 공격은 안전한 통신 채널을 가진 두 기기 사이에서도 효과적으로 공격을 성공시킬 수 있고, 공격의 원리가 복잡하지 않아 쉽게 구현이 가능하다. 본 논문에서는 거리 제한 방식(distance bounding)이나 위치 측정 후 비교와 같은 기존 방어 기법과 다른 청각 채널을 통한 릴레이 공격 탐지에 대해 제안한다.
Research in the field of computer vision based on deep learning is being actively conducted. However, deep learning-based models have vulnerabilities in adversarial attacks that increase the model's misclassification rate by applying adversarial perturbation. In particular, in the case of FGSM, it is recognized as one of the effective attack methods because it is simple, fast and has a considerable attack success rate. Meanwhile, as one of the efforts to visualize deep learning models, Grad-CAM enables visual explanation of convolutional neural networks. In this paper, I propose a method to generate adversarial examples with high attack success rate by applying Grad-CAM to FGSM. The method chooses fixels, which are closely related to labels, by using Grad-CAM and add perturbations to the fixels intensively. The proposed method has a higher success rate than the FGSM model in the same perturbation for both targeted and untargeted examples. In addition, unlike FGSM, it has the advantage that the distribution of noise is not uniform, and when the success rate is increased by repeatedly applying noise, the attack is successful with fewer iterations.
전력 분석 (Power Analysis, PA) 공격은 정보보안 영역에서 매우 효과적인 물리적 공격방법으로 알려져 있다. 이 공격방법은 보안 장치로부터 누설된 전력 소비 신호의 통계적인 특성을 분석하여 비밀 키 (secret keys)를 찾아낸다. 그러나 누설된 전력 신호의 값이 크지 않기 때문에, 잡음에 의해 PA 공격 성능이 저하될 수 있다. 이런 PA 공격의 잡음 민감성을 극복하기 위해, 본 논문에서는 웨이블릿 잡음 제거 (wavelet de-noising)에 기반한 공격 성능 향상 방법을 제안한다. 모의실험을 통해, 제안된 잡음 제거 방법이 공격 성공에 필요한 신호의 개수와 공격 결과의 신뢰도 측면에서 공격 효율을 향상시킴을 보인다.
As reproduction of images can be done with ease, copy detection has increasingly become important. In the duplication process, image modifications are likely to occur and some alterations are deliberate and can be viewed as attacks. A wide range of copy detection techniques has been proposed. In our study, content-based copy detection, which basically applies DCT-based features for images, namely, pixel values, edges, texture information and frequency-domain component distribution, is employed. Experiments are carried out to evaluate robustness and sensitivity of DCT-based features from attacks. As different types of DCT-based features hold different pieces of information, how features and attacks are related can be shown in their robustness and sensitivity. Rather than searching for proper features, use of robustness and sensitivity is proposed here to realize how the attacked features have changed when an image attack occurs. The experiments show that, out of ten attacks, the neural networks are able to detect seven attacks namely, Gaussian noise, S&P noise, Gamma correction (high), blurring, resizing (big), compression and rotation with mostly related to their sensitive features.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.