• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.028 seconds

i-LEACH : Head-node Constrained Clustering Algorithm for Randomly-Deployed WSN (i-LEACH : 랜덤배치 고정형 WSN에서 헤더수 고정 클러스터링 알고리즘)

  • Kim, Chang-Joon;Lee, Doo-Wan;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.198-204
    • /
    • 2012
  • Generally, the clustering of sensor nodes in WSN is a useful mechanism that helps to cope with scalability problem and, if combined with network data aggregation, may increase the energy efficiency of the network. The Hierarchical clustering routing algorithm is a typical algorithm for enhancing overall energy efficiency of network, which selects cluster-head in order to send the aggregated data arriving from the node in cluster to a base station. In this paper, we propose the improved-LEACH that uses comparably simple and light-weighted policy to select cluster-head nodes, which results in reduction of the clustering overhead and overall power consumption of network. By using fine-grained power model, the simulation results show that i-LEACH can reduce clustering overhead compared with the well-known previous works such as LEACH. As result, i-LEACH algorithm and LEACH algorithm was compared, network power-consumption of i-LEACH algorithm was improved than LEACH algorithm with 25%, and network-traffic was improved 16%.

Property-based Hierarchical Clustering of Peers using Mobile Agent for Unstructured P2P Systems (비구조화 P2P 시스템에서 이동에이전트를 이용한 Peer의 속성기반 계층적 클러스터링)

  • Salvo, MichaelAngelG.;Mateo, RomeoMarkA.;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2009
  • Unstructured peer-to-peer systems are most commonly used in today's internet. But file placement is random in these systems and no correlation exists between peers and their contents. There is no guarantee that flooding queries will find the desired data. In this paper, we propose to cluster nodes in unstructured P2P systems using the agglomerative hierarchical clustering algorithm to improve the search method. We compared the delay time of clustering the nodes between our proposed algorithm and the k-means clustering algorithm. We also simulated the delay time of locating data in a network topology and recorded the overhead of the system using our proposed algorithm, k-means clustering, and without clustering. Simulation results show that the delay time of our proposed algorithm is shorter compared to other methods and resource overhead is also reduced.

  • PDF

A Dual-layer Energy Efficient Distributed Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 이중 레이어 분산 클러스터링 기법)

  • Yeo, Myung-Ho;Kim, Yu-Mi;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.84-95
    • /
    • 2008
  • Wireless sensor networks have recently emerged as a platform for several applications. By deploying wireless sensor nodes and constructing a sensor network, we can remotely obtain information about the behavior, conditions, and positions of objects in a region. Since sensor nodes operate on batteries, energy-efficient mechanisms for gathering sensor data are indispensable to prolong the lifetime of a sensor network as long as possible. In this paper, we propose a novel clustering algorithm that distributes the energy consumption of a cluster head. First, we analyze the energy consumption if cluster heads and divide each cluster into a collection layer and a transmission layer according to their roles. Then, we elect a cluster head for each layer to distribute the energy consumption of single cluster head. In order to show the superiority of our clustering algorithm, we compare it with the existing clustering algorithm in terms of the lifetime of the sensor network. As a result, our experimental results show that the proposed clustering algorithm achieves about $10%{\sim}40%$ performance improvements over the existing clustering algorithms.

An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network (무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집)

  • Yun, SangHun;Cho, Haengrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

Coordinated Cognitive Tethering in Dense Wireless Areas

  • Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.314-325
    • /
    • 2016
  • This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.

A Study on Efficient Routing Method with Location-based Clustering in Wireless Sensor Networks (무선센서네트워크에서의 위치기반 클러스터 구성을 통한 효율적인 라우팅 방안 연구)

  • Lim, Naeun;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.103-108
    • /
    • 2015
  • Maintaining efficient energy consumption and elongating network lifetime are the key issues in wireless sensor networks. Existing routing protocols usually select the cluster heads based on the proximity to the sensor nodes. In this case the cluster heads can be placed farther to the base station, than the distance between the sensor nodes and the base station, which yields inefficient energy consumption. In this work we propose a novel algorithm that select the nodes in a cluster and the cluster heads based on the locations of related nodes. We verify that the proposed algorithm gives better performance in terms of network life time than existing solutions.

A Genetic Algorithm for Network Clustering in Underwater Acoustic Sensor Networks (해양 센서 네트워크에서 네트워크 클러스터링을 위한 유전 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2687-2696
    • /
    • 2011
  • A Clustering problem is one of the organizational problems to improve network lifetime and scalability in underwater acoustic sensor networks. This paper propose an algorithm to obtain an optimal clustering solution to be able to minimize a total transmission power for all deployed nodes to transmit data to the sink node through its clusterhead. In general, as the number of nodes increases, the amount of calculation for finding the solution would be too much increased. To obtain the optimal solution within a reasonable computation time, we propose a genetic algorithm to obtain the optimal solution of the cluster configuration. In order to make a search more efficient, we propose some efficient neighborhood generating operations of the genetic algorithm. We evaluate those performances through some experiments in terms of the total transmission power of nodes and the execution time of the proposed algorithm. The evaluation results show that the proposed algorithm is efficient for the cluster configuration in underwater acoustic sensor networks.

Energy Modeling For the Cluster-based Sensor Networks (클러스터 기반 센서 네트워크의 에너지 모델링 기법)

  • Choi, Jin-Chul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.14-22
    • /
    • 2007
  • Wireless sensor networks are composed of numerous sensor nodes and exchange or recharging of the battery is impossible after deployment. Thus, sonsor nodes must be very energy-efficient. As neighboring sensor nodes generally have the data of similar information, duplicate transmission of similar information is usual. To prevent energy wastes by duplicate transmissions, it is advantageous to organize sensors into clusters. The performance of clustering scheme is influenced by the cluster-head election method and the size or the number of clusters. Thus, we should optimize these factors to maximize the energy efficiency of the clustering scheme. In this paper, we propose a new energy consumption model for LEACH which is a well-known clustering protocol and determine the optimal number of clusters based on our model. Our model has accuracy over 80% compared with the simulation and is considerably superior to the existing model of LEACH.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Energy Efficient Cluster Routing Method Using Machine Learning in WSN (무선 센서 네트워크에서의 머신러닝을 활용한 에너지 효율적인 클러스터 라우팅 방안 연구)

  • Mi-Young, Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.124-130
    • /
    • 2023
  • In this paper, we intend to improve the network lifetime by improving the energy efficiency of sensor nodes in a wireless sensor network by utilizing machine learning using K-means clustering algorithm. A wireless sensor network is a wireless network composed of physical devices including batteries as physical sensors. Due to the characteristics of sensor nodes, all resources must be efficiently used to minimize energy consumption to maximize network lifetime. A cluster based approach is used to manage groups of relatively large numbers of nodes. In the proposed protocol, by improving the existing LEACH algorithm, we propose a clustering algorithm that selects a cluster head using a cluster based approach and a location based approach. The performance results to be improved were measured using Matlab simulation. Through the experimental results, K-means clustering was applied to the energy efficiency part. By utilizing K-means, it is confirmed that energy efficiency is improved and the lifetime of the entire network is extended.