• Title/Summary/Keyword: Node reliability

Search Result 375, Processing Time 0.02 seconds

Design and Implementation of User-Level FileSystem in the Combat Management System

  • Kang, Seok-Hyun;Kim, Keun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.9-16
    • /
    • 2022
  • In this paper, we propose a plan to design and utilize the RDBS(Record Block Data file management System) so that data can be recovered when data files in the Combat Management System are mismatched. The CMS(Combat Management System) manages the same files in multiple IPN(Infomation Processing Node) repositories to support multiplexing. However, mismatches in data files can occur due to equipment maintenance or user immaturity. The existing CMS does not manage the history of changes in data files, and when a mismatch occurs, data file were synchronized based on the latest date. But, It is difficult to say that files with the latest date have the highest reliability, and once the file synchronization has progressed, it cannot be recovered with pre-synchronization data. To solve this problem, data was stored and synchronized in units of record blocks using RDBS proposed in this paper, and the Rsync algorithm was used to reduce the overhead of file synchronization due to units of record blocks. SW applied with RDBS was tested for performance in a simulated environment, and it was confirmed that it could be applied to CMS through normal operation confirmation.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

An Analysis into the Characteristics of the High-pass Transportation Data and Information Processing Measures on Urban Roads (도시부도로에서의 하이패스 교통자료 특성분석 및 정보가공방안)

  • Jung, Min-Chul;Kim, Young-Chan;Kim, Dong-Hyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.74-83
    • /
    • 2011
  • The high-pass transportation information system directly collects section information by using probe cars and therefore can offer more reliable information to drivers. However, because the running condition and features of probe cars and statistical processing methods affect the reliability of the information and particularly because the section travel time is greatly influenced by whether there has been delay by signals on urban roads or not, there can be much deviation among the collected individual probe data. Accordingly, researches in multilateral directions are necessary in order to enhance the credibility of the section information. Yet, the precedent studies related to high-pass information provision have been conducted on the highway sections with the feature of continuous flow, which has a limit to be applied to the urban roads with the transportational feature of an interrupted flow. Therefore, this research aims at analyzing the features of high-pass transportation data on urban roads and finding a proper processing method. When the characteristics of the high-pass data on urban roads collected from RSE were analyzed by using a time-space diagram, the collected data was proved to have a certain pattern according to the arriving cars' waiting for signals with the period of the signaling cycle of the finish node. Moreover, the number of waiting for signals and the time of waiting caused the deviation in the collected data, and it was bigger in traffic jam. The analysis result showed that it was because the increased number of waiting for signals in traffic jam caused the deviation to be offset partially. The analysis result shows that it is appropriate to use the mean of this collected data of high-pass on urban roads as its representative value to reflect the transportational features by waiting for signals, and the standard of judgment of delay and congestion needs to be changed depending on the features of signals and roads. The results of this research are expected to be the foundation stone to improve the reliability of high-pass information on urban roads.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.