• Title/Summary/Keyword: Node cost computation

Search Result 38, Processing Time 0.021 seconds

Security Issues in Combined Protocol Between RFID Application and Wireless Sensor Network (RFID와 무선 센서네트워크를 융합한 프로토콜에서의 보안 문제)

  • Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.154-155
    • /
    • 2013
  • This paper presents a user authentication scheme for healthcare application using wireless sensor networks, where wireless sensors are used for patients monitoring. These medical sensors' sense the patient body data and transmit it to the professionals. Since, the data of an individual are highly vulnerable; it must ensures that patients medical vital signs are secure, and are not exposed to an unauthorized person. In this regards, we propose a user authentication scheme for healthcare application using medical sensor networks. The proposed scheme includes: a novel two-factor user authentication, where the healthcare professionals are authenticated before access the patient's body data; a secure session key is establish between the patient sensor node and the professional at the end of user authentication. Furthermore, the analysis shows that the proposed scheme is safeguard to various practical attacks and achieves efficiency at low computation cost.

  • PDF

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

Priority-Based Hybrid File Storage Management System Using Logical Volume Manager (논리 볼륨 매니저를 이용한 파일 우선순위 기반의 하이브리드 저장장치 관리 시스템)

  • Choi, Hoonha;Kim, Hyeunjee;No, Jaechun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.94-102
    • /
    • 2016
  • Recently, the I/O performance of a single node is rapidly improving due to the advent of high-performance SSD. As a result, the next-generation storage platform based on SSD has received a great deal of attention and such storage platforms are increasingly adopted to commodity servers or data centers that look for the high-bandwidth computation and I/O. However, building all SSD-based storage platform may not be cost-effective because the price per storage capacity is very high as compared to that of HDD. In this paper. we propose a hybrid file management solution, called HyPLVM(Hybrid Priority Logical Volume Manager), which combines the strength of SSD with the desirable aspects of low-price, high-storage capacity HDD. HyPLVM prioritizes the files and directories to be accessed by users, in order to determine the target storage device (SSD/HDD) in which files are allocated, while mitigating the cost of building storage platforms.

Blockchain-based Data Storage Security Architecture for e-Health Care Systems: A Case of Government of Tanzania Hospital Management Information System

  • Mnyawi, Richard;Kombe, Cleverence;Sam, Anael;Nyambo, Devotha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.364-374
    • /
    • 2022
  • Health information systems (HIS) are facing security challenges on data privacy and confidentiality. These challenges are based on centralized system architecture creating a target for malicious attacks. Blockchain technology has emerged as a trending technology with the potential to improve data security. Despite the effectiveness of this technology, still HIS are suffering from a lack of data privacy and confidentiality. This paper presents a blockchain-based data storage security architecture integrated with an e-Health care system to improve its security. The study employed a qualitative research method where data were collected using interviews and document analysis. Execute-order-validate Fabric's storage security architecture was implemented through private data collection, which is the combination of the actual private data stored in a private state, and a hash of that private data to guarantee data privacy. The key findings of this research show that data privacy and confidentiality are attained through a private data policy. Network peers are decentralized with blockchain only for hash storage to avoid storage challenges. Cost-effectiveness is achieved through data storage within a database of a Hyperledger Fabric. The overall performance of Fabric is higher than Ethereum. Ethereum's low performance is due to its execute-validate architecture which has high computation power with transaction inconsistencies. E-Health care system administrators should be trained and engaged with blockchain architectural designs for health data storage security. Health policymakers should be aware of blockchain technology and make use of the findings. The scientific contribution of this study is based on; cost-effectiveness of secured data storage, the use of hashes of network data stored in each node, and low energy consumption of Fabric leading to high performance.

Digital Logic System Design based on Directed Cyclic graph (다이렉트사이클릭그래프에 기초한 디지털논리시스템 설계)

  • Park, Chun-Myoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 2009
  • This paper proposes the algorithms that design the highly digital logic circuit and assign the code to each node of DCG(Directed Cyclic Graph) of length ${\zeta}$. The conventional algorithm have some problems, so this paper introduce the matrix equation from DCG of length ${\zeta}$ and proposes highly digital logic circuit design algorithms according to the DCG of length ${\zeta}$. Using the proposed circuit design algorithms in this paper, it become realized that was able to design from former algorithm. Also, making a comparison between the circuit using former algorithm and this paper's, we testify that proposed paper's algorithm is able to realize more optimized circuit design. According to proposed circuit design algorithm in this paper, it is possible to design current that DCG have natural number, so it have the following advantages, reduction of the circuit input/output digits, simplification of circuit composition, reduction of computation time and cost. And we show comparability and verification about this paper's algorithm.

  • PDF

A Method to Customize Cluster Member Nodes for Energy-Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율을 위한 클러스터 멤버 노드 설정 방법)

  • Nam, Chooon-Sung;Jang, Kyung-Soo;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.15-21
    • /
    • 2009
  • The goal of wireless sensor networks is to collect sensing data on specific region over wireless communication. Sink node gathers all local sensing data, processes and transmits them to users who use sensor networks. Generally, senor nodes are low-cost, low power devices with limited sensing, computation and wireless communication capabilities. And sensor network applies to multi-hop communication on large-scale network. As neighboring sensor nodes have similar data, clustering is more effective technique for 'data-aggregation'. In cluster formation technique based on multi-hop, it is necessary that the number of cluster member nodes should be distributed equally because of the balance of cluster formation To achieve this, we propose a method to customize cluster member nodes for energy-efficiency in wireless sensor networks.

  • PDF

A Study on the Highly Parallel Multiple-Valued Logic Circuit Design using by the DCG (DCG에 의한 고속병렬다치논리회로설계에 관한 연구)

  • 변기녕;최재석;박춘명;김흥수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.20-29
    • /
    • 1998
  • This paper proposes the algorithms that design the highly parallel multiple-valued logic curcuit and assign the code to each node of DCG(Directed Cyclic Graph) of length 1. The conventional Nakajima's algorithm have some problems, so this paper introduce the matrix equation from DCG of length 1 and proposes circuit design algorithms according to the DCG of length 1. Using the proposed circuit design algorithms in this paper, it become realized that was not able to design from Nakajima's algorithm. Also, making a comparision between the circuit design using Nakajima's algorithm and this paper's, we testify that proposed paper's algorithm is able to realize more optimized circuit design. According to proposed curcuit design algorithm in this paper, it is possible to design curcuit that DCG have natural number, so it have the following advantages; reduction of the curcuit input/output digits, simplification of curcuit composition, reduction of computation time and cost. And we show compatibility and verification about this paper's algorithm.

An Efficient Authentication Mechanism in Mobile-IP Network (Mobile-IP망에서의 효율적인 인증 방안)

  • Chung, Sun-Nie;Chae, Ki-Joon;Jang, Jong-Soo;Sohn, Sung-Won
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.3
    • /
    • pp.321-335
    • /
    • 2001
  • The explosive growth in wireless networking increasingly urges the demand to support mobility within the Internet which is what Mobile-IP aims to provide. Because the transmission of signals through open-air s easy to be attacked, it is important to provide secure transmission for mobile users and make them responsible for what they have done in networks. Although IETF provides a secret-key based security mechanism, those mechanisms suffer from scalability, efficiency and non-repudiation service problem. The proposed mechanism uses public-key based authentication optimizing the performance. It includes non-repudiation service on the side of mobile for airtight security in wireless network. The simulation results show that the proposed authentication reduces the total registration time. It especially minimizes the computation cost on the side of the mobile node and solves the power problem. In practice, the proposed authentication is feasible with reasonable performance and security service in macro mobility that Mobile-IP is intended to solve.

  • PDF