• Title/Summary/Keyword: Node Search

Search Result 356, Processing Time 0.024 seconds

Use of Tree Traversal Algorithms for Chain Formation in the PEGASIS Data Gathering Protocol for Wireless Sensor Networks

  • Meghanathan, Natarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.612-627
    • /
    • 2009
  • The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.

Design and Implementation of BADA-IV/XML Query Processor Supporting Efficient Structure Querying (효율적 구조 질의를 지원하는 바다-IV/XML 질의처리기의 설계 및 구현)

  • 이명철;김상균;손덕주;김명준;이규철
    • The Journal of Information Technology and Database
    • /
    • v.7 no.2
    • /
    • pp.17-32
    • /
    • 2000
  • As XML emerging as the Internet electronic document language standard of the next generation, the number of XML documents which contain vast amount of Information is increasing substantially through the transformation of existing documents to XML documents or the appearance of new XML documents. Consequently, XML document retrieval system becomes extremely essential for searching through a large quantity of XML documents that are storied in and managed by DBMS. In this paper we describe the design and implementation of BADA-IV/XML query processor that supports content-based, structure-based and attribute-based retrieval. We design XML query language based upon XQL (XML Query Language) of W3C and tightly-coupled with OQL (a query language for object-oriented database). XML document is stored and maintained in BADA-IV, which is an object-oriented database management system developed by ETRI (Electronics and Telecommunications Research Institute) The storage data model is based on DOM (Document Object Model), therefore the retrieval of XML documents is executed basically using DOM tree traversal. We improve the search performance using Node ID which represents node's hierarchy information in an XML document. Assuming that DOW tree is a complete k-ary tree, we show that Node ID technique is superior to DOM tree traversal from the viewpoint of node fetch counts.

  • PDF

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

Routing Mechanism using Mobility Prediction of Node for QoS in Mobile Ad-hoc Network (모바일 애드-혹 네트워크에서 QoS를 위한 노드의 이동성 예측 라우팅 기법)

  • Cha, Hyun-Jong;Han, In-Sung;Yang, Ho-Kyung;Cho, Yong-Gun;Ryou, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.659-667
    • /
    • 2009
  • Mobile Ad-hoc Network consists of mobile nodes without immobile base station. In mobile ad-hoc network, network cutting has occurred frequently in node because of energy restriction and frequent transfer of node. Therefore, it requires research for certain techniques that react softly in topology alteration in order to improve reliability of transmission path. This paper proposes path selection techniques to consider mobility of node that respond when search path using AOMDV routing protocol. As applying proposed techniques, We can improve reliability and reduce re-searching number of times caused by path cutting.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

A Method to Find the Core Node Engaged in Malware Propagation in the Malware Distribution Network Hidden in the Web (웹에 숨겨진 악성코드 배포 네트워크에서 악성코드 전파 핵심노드를 찾는 방안)

  • Kim Sung Jin
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.3-10
    • /
    • 2023
  • In the malware distribution network existing on the web, there is a central node that plays a key role in distributing malware. If you find and block this node, you can effectively block the propagation of malware. In this study, a centrality search method applied with risk analysis in a complex network is proposed, and a method for finding a core node in a malware distribution network is introduced through this approach. In addition, there is a big difference between a benign network and a malicious network in terms of in-degree and out-degree, and also in terms of network layout. Through these characteristics, we can discriminate between malicious and benign networks.

Shortest Path Search Scheme with a Graph of Multiple Attributes

  • Kim, Jongwan;Choi, KwangJin;Oh, Dukshin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.135-144
    • /
    • 2020
  • In graph theory, the least-cost path is discovered by searching the shortest path between a start node and destination node. The least cost is calculated as a one-dimensional value that represents the difference in distance or price between two nodes, and the nodes and edges that comprise the lowest sum of costs between the linked nodes is the shortest path. However, it is difficult to determine the shortest path if each node has multiple attributes because the number of cost types that can appear is equal to the number of attributes. In this paper, a shortest path search scheme is proposed that considers multiple attributes using the Euclidean distance to satisfy various user requirements. In simulation, we discovered that the shortest path calculated using one-dimensional values differs from that calculated using the Euclidean distance for two-dimensional attributes. The user's preferences are reflected in multi attributes and it was different from one-dimensional attribute. Consequently, user requirements could be satisfied simultaneously by considering multiple attributes.

Development of the algorithms for establishing the relative positional relations between node-pipe-valve of water pipe networks (상수도 관망의 노드-파이프-밸브 사이의 상대적 위치 관계를 수립하기 위한 알고리즘의 개발)

  • Park, Suwan;Jeon, Ye Jun;Kim, Kyeong Cheol;Lee, Hyun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1187-1195
    • /
    • 2022
  • To run the algorithm for identifying the segments of a pipe network, the relative positional relation between nodes, pipes, and valves should be prepared as input information of a segment search algorithm. In order to more accurately identify the segments of real pipe network, pipe network GIS/CAD database that contains all isolation valves is more suitable than modeled pipe network information used for a hydraulic analysis program. In this study, we developed an algorithm that can establish the relative positional relations among node-pipe-valve suitable for pipe network segment search algorithms using GIS/CAD data of a real water supply network, and developed a MATLAB program that can implement it. The effectiveness of the developed MATLAB program was confirmed by applying it to a portion of a real municipal pipe network.

A Point-to-Point Shortest Path Search Algorithm in an Undirected Graph Using Minimum Spanning Tree (최소신장트리를 이용한 무방향 그래프의 점대점 최단경로 탐색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.103-111
    • /
    • 2014
  • This paper proposes a modified algorithm that improves on Dijkstra's algorithm by applying it to purely two-way traffic paths, given that a road where bi-directional traffic is made possible shall be considered as an undirected graph. Dijkstra's algorithm is the most generally utilized form of shortest-path search mechanism in GPS navigation system. However, it requires a large amount of memory for execution for it selects the shortest path by calculating distance between the starting node and every other node in a given directed graph. Dijkstra's algorithm, therefore, may occasionally fail to provide real-time information on the shortest path. To rectify the aforementioned shortcomings of Dijkstra's algorithm, the proposed algorithm creates conditions favorable to the undirected graph. It firstly selects the shortest path from all path vertices except for the starting and destination vertices. It later chooses all vertex-outgoing edges that coincide with the shortest path setting edges so as to simultaneously explore various vertices. When tested on 9 different undirected graphs, the proposed algorithm has not only successfully found the shortest path in all, but did so by reducing the time by 60% and requiring less memory.

Device-to-Device assisted user clustering for Multiple Access in MIMO WLAN

  • Hongyi, Zhao;Weimin, Wu;li, Lu;Yingzhuang, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2972-2991
    • /
    • 2016
  • WLAN is the best choice in the place where complex network is hard to set up. Intelligent terminals are more and more assembled in some areas now. However, according to IEEE 802.11n/802.11ac, the access-point (AP) can only serve one user at a single frequency channel. The spectrum efficiency urgently needs to be improved. In theory, AP with multi-antenna can serve multiple users if these users do not interfere with each other. In this paper, we propose a user clustering scheme that could achieve multi-user selection through the mutual cooperation among users. We focus on two points, one is to achieve multi-user communication with multiple antennas technique at a single frequency channel, and the other one is to use a way of distributed users' collaboration to determine the multi-user selection for user clustering. Firstly, we use the CSMA/CA protocol to select the first user, and then we set this user as a source node using users' cooperation to search other proper users. With the help of the users' broadcast cooperation, we can search and select other appropriate user (while the number of access users is limited by the number of antennas in AP) to access AP with the first user simultaneously. In the network node searching, we propose a maximum degree energy routing searching algorithm, which uses the shortest time and traverses as many users as possible. We carried out the necessary analysis and simulation to prove the feasibility of the scheme. We hope this work may provide a new idea for the solution of the multiple access problem.