DOI QR코드

DOI QR Code

A Point-to-Point Shortest Path Search Algorithm in an Undirected Graph Using Minimum Spanning Tree

최소신장트리를 이용한 무방향 그래프의 점대점 최단경로 탐색 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2014.04.25
  • Accepted : 2014.07.01
  • Published : 2014.07.31

Abstract

This paper proposes a modified algorithm that improves on Dijkstra's algorithm by applying it to purely two-way traffic paths, given that a road where bi-directional traffic is made possible shall be considered as an undirected graph. Dijkstra's algorithm is the most generally utilized form of shortest-path search mechanism in GPS navigation system. However, it requires a large amount of memory for execution for it selects the shortest path by calculating distance between the starting node and every other node in a given directed graph. Dijkstra's algorithm, therefore, may occasionally fail to provide real-time information on the shortest path. To rectify the aforementioned shortcomings of Dijkstra's algorithm, the proposed algorithm creates conditions favorable to the undirected graph. It firstly selects the shortest path from all path vertices except for the starting and destination vertices. It later chooses all vertex-outgoing edges that coincide with the shortest path setting edges so as to simultaneously explore various vertices. When tested on 9 different undirected graphs, the proposed algorithm has not only successfully found the shortest path in all, but did so by reducing the time by 60% and requiring less memory.

본 논문은 실시간 GPS 항법시스템에서 최단경로 탐색에 일반적으로 적용되고 있는 Dijkstra 알고리즘을 양방향 통행로(무방향그래프)로만 구성된 도로에 적용하고 문제점을 개선한 알고리즘을 제안하였다. Dijkstra 알고리즘은 방향 그래프에서 출발 노드부터 시작하여 그래프의 모든 노드에 대한 최단경로를 결정하기 때문에 알고리즘 수행에 많은 메모리가 요구되어 실시간으로 정보를 제공하지 못할 수도 있다. 이러한 문제점을 해결하고자, 본 논문에서는 무방향 그래프에 적합하도록 출발과 목적지 정점을 제외한 경로 정점들에 대해 최단경로를 설정하고, 출발 정점부터 시작하여 정점 유출 간선들에 대해 최단경로 설정 간선들과 일치하는 간선들을 모두 선택하는 방식으로 한 번에 다수의 정점들을 탐색하는 방법을 택하였다. 9개의 다양한 무방향 그래프에 제안된 알고리즘을 적용한 결과 모두 최단경로를 탐색하는데 성공하였다. 또한, 수행 속도 측면에서 Dijkstra 알고리즘보다 약 60%를 단축시키는 효과를 얻었으며, 알고리즘 수행에 필요한 메모리도 월등히 적게 요구되었다.

Keywords

References

  1. M. Abboud, L. Mariya, A. Jaoude, and Z. Kerbage, "Real Time GPS Navigation System, " 3rd FEA Student Conference, Department of Electrical and Computer Engineering, American University of Beirut, 2004.
  2. T. H. Cormen, C. E. Leserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," 2nd Edition, MIT Press and McGraw-Hill, 2001.
  3. E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische Mathematik, Vol. 1, No. 1, pp. 269-271, 1959. https://doi.org/10.1007/BF01386390
  4. Wikipedia, "Dijkstra's Algorithm," http://en.wikipedia.org/wiki/Dijkstra_algorithm, Wikimedia Foundation Inc., 2007.
  5. J. Misra, "A Walk Over the Shortest Path: Dijkstra's Algorithm Viewed as Fixed-Point Computation," Department of Computer Science, University of Texas at Austin, USA, 2000.
  6. Y. T. Lim and H. M. Kim, "A Shortest Path Algorithm for Real Road Network Based on Path Overlap," Department of Civil Engineering, Institute of Transportation Studies, University of California, Irvine, USA, 2005.
  7. F. B. Zhan, "Three Fastest Shortest Path Algorithms on Real Road Networks: Data Structures and Procedures," Journal of Geographic Information and Decision Analysis, Vol. 1, No. 1, pp. 69-82, Feb. 1997.
  8. R. C. Prim, "Shortest Connection Networks and Some Generalisations," Bell System Technical Journal, Vol. 36, pp. 1389-1401, Nov. 1957. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
  9. W. W. L. Chen, "Discrete Mathematics, " Department of Mathematics, Division of ICS, Macquarie University, Australia, 2003.
  10. S. U. Lee, "A Point-to-Point Shortest Path Search Algorithm for Digraph," Journal of Korean Institute of Intelligent Systems, Vol. 17, No. 7, pp. 893-900, Dec. 2007. https://doi.org/10.5391/JKIIS.2007.17.7.893
  11. S. U. Lee, "A Point-to-Point Shortest Path Algorithm Based on Level Node Selection, " Journal of the Institute of Internet, Broadcasting and Communication, Vol. 12, No. 1, pp. 133-140, Feb. 2012. https://doi.org/10.7236/JIWIT.2012.12.1.133
  12. S. U. Lee, "A Real-time Point-to-Point Shortest Path Search Algorithm Based on Traveling Time," Journal of the Institute of Internet, Broadcasting and Communication, Vol. 12, No. 4, pp. 131-140, Aug. 2012. https://doi.org/10.7236/JIWIT.2012.12.4.131
  13. O. Boruvka, "O Jistem Problemu Minimalnim, " Prace Mor. Prrodved. Spol. V Brne (Acta Societ. Natur. Moravicae), Vol. III, No. 3, pp. 37-58, 1926.
  14. J. Nesetril, E. Milkova, and H. Nesetrilova, "Otakar Boruvka on Minimum Spanning Tree Problem (Translation of the both 1926 Papers, Comments, History)," DMATH: Discrete Mathematics, Vol. 233, No. 1-3, pp. 3-36, Apr. 2001. https://doi.org/10.1016/S0012-365X(00)00224-7
  15. R. Wenger, "CIS 780: Analysis of Algorithms," http://www.cse.ohio-state.edu/-wenger/cis780/shortest_path.pdf, 2004.
  16. C. Peiper, CS 400-Data Structures for Non CS-Majors," http://www.cs.uiuc.edu/class/fa05/cs400/_labs/Lab12/suuri/, 2005.
  17. Y. T. Lim and H. M. Kim, "A Shortest Path Algorithm for Real Road Network Based on Path Overlap," Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 1426-1438, 2005.

Cited by

  1. 빅데이터 기반 군수품 품질정보 활용방안에 대한 연구 vol.17, pp.6, 2016, https://doi.org/10.5762/kais.2016.17.6.315