• 제목/요약/키워드: Node Network Modeling

Search Result 89, Processing Time 0.031 seconds

Modeling of a controlled retransmission scheme for loss recovery in optical burst switching networks

  • Duong, Phuoc Dat;Nguyen, Hong Quoc;Dang, Thanh Chuong;Vo, Viet Minh Nhat
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.274-285
    • /
    • 2022
  • Retransmission in optical burst switching networks is a solution to recover data loss by retransmitting the dropped burst. The ingress node temporarily stores a copy of the complete burst and sends it each time it receives a retransmission request from the core node. Some retransmission schemes have been suggested, but uncontrolled retransmission often increases the network load, consumes more bandwidth, and consequently, increases the probability of contention. Controlled retransmission is therefore essential. This paper proposes a new controlled retransmission scheme for loss recovery, where the available bandwidth of wavelength channels and the burst lifetime are referred to as network conditions to determine whether to transmit a dropped burst. A retrial queue-based analysis model is also constructed to validate the proposed retransmission scheme. The simulation and analysis results show that the controlled retransmission scheme is more efficient than the previously suggested schemes regarding byte loss probability, successful retransmission rate, and network throughput.

Development of Modeling to Find the Hub Nodes on Growing Scale-free Network based on Stochastic Community Bridge Node Finder (확장하는 Scale-free 네트워크에서의 허브노드 도출을 위한 Stochastic Community Bridge Node Finder 개발)

  • Eun, Sang-Kyu;Kim, Soo-Jin;Bae, Seung-Jong;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The community bridge node finder, based on the stochastic method of network analysis, can compute hubs spot, which would enable the use of network structures with limited information. However, applying this node finder to heterogeneity networks, which are efficient to analyze the main farm complex in fields and the spread of infectious disease, is difficult. These problems, The most connected point that is called hub is often a major role in the heterogeneity network. In this study, we therefore improved the community bridge node finder to enable it to be applied to heterogeneity networks. We attempted to calculate the bridge node quantitatively by using the modularity of cohesion analysis method and the community bridge node finder. Application of the improved method to the HPAI(Highly Pathogenic Avian Influenza) spread in Korea 2008 produced a quarantine coefficient that was 4 - 37% higher than the quarantine coefficient obtained with the centrality method for the first 14 days after the HPAI outbreak. We concluded that the improved method has the ability to successfully calculate the bridge node in heterogeneity networks based on network structures with scant information, such as those describing the spread of infectious disease in domestic animals. And Our method should be capable to find main farm complex in fields.

Interface Specification Modeling for Distributed Network Management Agent of IMT-2000 Based on Applicable Service Independent Building Blocks (Applicable SIB에 의한 IMT-2000 분산 망관리 에이전트의 인터페이스 스펙 모델링)

  • Park, Soo-Hyun
    • Journal of Information Technology Services
    • /
    • v.1 no.1
    • /
    • pp.119-139
    • /
    • 2002
  • It is noteworthy that IMT -2000 communication network based on All-HP/AIN(Advanced Intelligent Network) should accomodate current and future wire/wireless AIN service easily through integration and gearing AIN construction elements. In this paper. Intelligent Farmer model(I-Farmer Model) and methodology are suggested in order to solve the several problems including standardization on implementation of Q3 interface in Telecommunication Management Network(TMN) agents which is caused by heterogeneous platform environment and future maintenance. Also this paper proposes ITI algorithm transforming the system which is designed by I-Farmer model to Interface Specification Model(ISM) applying the I-Farmer model. In addition to ITI algorithm. we suggest NTS(Node to SIB) algorithm converting entity node and ILB/OLB component in agent system designed by the I-Farmer model to SIB of AIN GFP(Global Functional Plane) and to ASIB for application program.

Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model (무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석)

  • Wang, Song;Chun, Seung-Man;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.867-875
    • /
    • 2009
  • The reliability of wireless body area networks is an important research issue since it may jeopardize the vital human life, unless managed properly. In this article, a new modeling and analysis of node misbehaviors in wireless body area networks is presented, in the presence of multi-type failures. First, the nodes are classified into types in accordance with routing capability. Then, the node behavior in the presence of failures such as energy exhaustion and/or malicious attacks has been modeled using a novel Semi-Markov process. The proposed model is very useful in analyzing reliability of WBANs in the presence of multi-type failures.

Logical Combinations of Neural Networks

  • Pradittasnee, Lapas;Thammano, Arit;Noppanakeepong, Suthichai
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1053-1056
    • /
    • 2000
  • In general, neural networks based modeling involves trying multiple networks with different architectures and/or training parameters in order to achieve the best accuracy. Only the single best-trained neural network is chosen, while the rest are discarded. However, using only the single best network may never give the best solution in every situation. Many researchers, therefore, propose methods to improve the accuracy of neural networks based modeling. In this paper, the idea of the logical combinations of neural networks is proposed and discussed in detail. The logical combination is constructed by combining the corresponding outputs of the neural networks with the logical “And” node. The experimental results based on simulated data show that the modeling accuracy is significantly improved when compared to using only the single best-trained neural network.

  • PDF

Software Engineering Meets Network Engineering: Conceptual Model for Events Monitoring and Logging

  • Al-Fedaghi, Sabah;Behbehani, Bader
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.9-20
    • /
    • 2021
  • Abstraction applied in computer networking hides network details behind a well-defined representation by building a model that captures an essential aspect of the network system. Two current methods of representation are available, one based on graph theory, where a network node is reduced to a point in a graph, and the other the use of non-methodological iconic depictions such as human heads, walls, towers or computer racks. In this paper, we adopt an abstract representation methodology, the thinging machine (TM), proposed in software engineering to model computer networks. TM defines a single coherent network architecture and topology that is constituted from only five generic actions with two types of arrows. Without loss of generality, this paper applies TM to model the area of network monitoring in packet-mode transmission. Complex network documents are difficult to maintain and are not guaranteed to mirror actual situations. Network monitoring is constant monitoring for and alerting of malfunctions, failures, stoppages or suspicious activities in a network system. Current monitoring systems are built on ad hoc descriptions that lack systemization. The TM model of monitoring presents a theoretical foundation integrated with events and behavior descriptions. To investigate TM modeling's feasibility, we apply it to an existing computer network in a Kuwaiti enterprise to create an integrated network system that includes hardware, software and communication facilities. The final specifications point to TM modeling's viability in the computer networking field.

The Improvement of Efficiency Performance for Moving Magnet Type Linear Actuator Using the Neural Network and Finite Element Method (신경회로망과 FEM을 이용한 가동 영구자석형 리니어 엑츄에이터의 성능 향상에 관한 연구)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.63-68
    • /
    • 2004
  • This paper presents an approach to optimum design of Moving Magnet Type Linear Oscillatory Actuator(MM-LOA). The Finite Element Method is applied to characteristic parameters for characteristic analysis and in order to reduce modeling time and efforts, the moving model node technique is used. In addition the neural network is used to reduce computational time of analysis according to changing design variable. To confirm the validity of this study, optimum design results are compared with results of analysis procedure that is verified by experiment.

A DEVS-based Modeling & Simulation Methodology of Enabling Node Mobility for Ad Hoc Network (노드 이동성을 고려한 애드 혹 네트워크의 이산 사건 시스템 기반 모델링 및 시뮬레이션 방법론)

  • Song, Sang-Bok;Lee, Kyou-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.127-136
    • /
    • 2009
  • Modeling and Simulation, especially in mobile ad hoc network(MANET), are the most effective way to analyze performance or optimize system parameters without establishing real network environment. Focusing mainly on overall network behaviors in MANET concerns dynamics of network transport operations, which can efficiently be characterized with event based system states rather than execution details of protocols. We thus consider the network as a discrete event system to analyze dynamics of network transport performance. Zeigler's set-theoretic DEVS(Discrete Event Systems Specification) formalism can support specification of a discrete event system in hierarchical, modular manner. The DEVSim++ simulation environment can not only provide a rigorous modeling methodology based on the DEVS formalism but also support modelers to develop discrete event models using the hierarchical composition methodology in object-orientation. This environment however hardly supports to specify connection paths of network nodes, which are continuously altered due to mobility of nodes. This paper proposes a DEVS-based modeling and simulation methodology of enabling node mobility, and develops DEVS models for the mobile ad hoc network. We also simulate developed models with the DEVSim++ engine to verify the proposal.

Response Analysis Model of Social Networks Using Fuzzy Sets and Feedback-Based System Dynamics (퍼지집합과 피드백 기반의 시스템 다이나믹스를 이용한 소셜네트웍의 반응 분석 모델)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.797-804
    • /
    • 2017
  • A social network is a typical social science environment with both network and iteration characteristics. This research presents a reaction analysis model of how each node responds to social networks when given input such as promotions or incentives. In addition, the setting value of a specific node is changed while examining the response of each node. And we try to understand the reactions of the nodes involved. The reaction analysis model is constructed by applying various techniques such as unidirectional, fuzzy set, weighting, and cyclic feedback, so it can accommodate the complicated environment of practice. Finally, the implementation model is implemented using Vensim rather than NetLogo because it requires repetitive input, change of setting value in real time, and analysis of association between nodes.

Optimal Feedback Control of Available Bit Rate Traffic in ATM using Receding Horizon Control

  • Shin, Soo-Young;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.133-136
    • /
    • 2001
  • In this work, the problem of regulating and tracking available bit rate (ABR) traffic in ATM network. The issue of providing control signals to throttled sources at distant location from bottlenecked node is of particular interest. Network modeling and design of controller is outlined. To obtain optimal control, receding horizon control (RHC) theory is applied. Simulation results are presented in views of regulation and tracking problems with or without constraints.

  • PDF