• 제목/요약/키워드: Nodal method

검색결과 523건 처리시간 0.022초

A Study on the Application of Analytic Nodal Method to a CANDU-600 Reactor Analysis

  • C.S. Yeom;Ryu, H.;Kim, H.J.;Kim, Y.H.;Kim, Y.B.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 추계 학술발표회 논문집
    • /
    • pp.115-120
    • /
    • 2000
  • The analysis of flux distribution under stead-state in large power reactors with assymetry reactivity insertions requires the use of three-dimensional diffusion calculations. For the purpose, consistently formulated modern nodal methods based on higher order interface techniques have become popular tools for flux distributions in large commercial nuclear reactors. Among the earlier developments, the nodal Green's function method obtains its nodal interface equation from the transverse-integrated integral diffusion equation using a finite-medium Green's function. In this method, the outgoing current from a node surface is formulated as a response of the incoming currents and the spatially integrated neutron source within the same node. The well-known nodal expansion method is also based on an interface partial current formulation. Nodal methods high-level interface variables, i.e., interface net current and flux, may be more computationally efficient than the nodal Green's function method because they have one fewer unknown per interface. The Analytic Nodal Method(ANM), which can be classified as an interface net current technique and, was faster in solving some standard benchmark problems than the other two methods.(omitted)

  • PDF

Nodal method for handling irregularly deformed geometries in hexagonal lattice cores

  • Seongchan Kim;Han Gyu Joo;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.772-784
    • /
    • 2024
  • The hexagonal nodal code RENUS has been enhanced to handle irregularly deformed hexagonal assemblies. The underlying RENUS methods involving triangle-based polynomial expansion nodal (T-PEN) and corner point balance (CPB) were extended in a way to use line and surface integrals of polynomials in a deformed hexagonal geometry. The nodal calculation is accelerated by the coarse mesh finite difference (CMFD) formulation extended to unstructured geometry. The accuracy of the unstructured nodal solution was evaluated for a group of 2D SFR core problems in which the assembly corner points are arbitrarily displaced. The RENUS results for the change in nuclear characteristics resulting from fuel deformation were compared with those of the reference McCARD Monte Carlo code. It turned out that the two solutions agree within 18 pcm in reactivity change and 0.46% in assembly power distribution change. These results demonstrate that the proposed unstructured nodal method can accurately model heterogeneous thermal expansion in hexagonal fueled cores.

배수관망내 수압부족시 절점수요량의 변화에 대한 기초적 고찰 (A Basic Study for the Variation of Nodal Demands According to the Low Pressure in Water Distribution Systems)

  • 현인환;이상목;김영환;안용호
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.726-732
    • /
    • 2002
  • Pressure drop could happen in the water distribution systems due to pipe breaks or maintenance. The pressure drop causes the water service shutdown and nodal water demands should be reduced in some areas. The conventional analysis method of water distribution systems can not consider the change of nodal water demands caused by these pressure drops. This study is to investigate the variation of nodal water demands according to the nodal water pressure and its effect on the analysis of water distribution systems. For these purpose, one real water service district was selected as a study area. As a result, nodal water demand patterns according to the water pressure could be suggested. Also, we could confirm that the suggested new analysis method for the water distribution systems which considering water pressure drops could be more reliable than the conventional method.

상대 절점 변위를 이용한 비선형 유한 요소 해석법 (A Relative Nodal Displacement Method for Element Nonlinear Analysis)

  • 김완구;배대성
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation

  • Wang, Dongdong;Xie, Pinkang;Lu, Hongsheng
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.107-125
    • /
    • 2013
  • A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.

有限要素法에 의한 舶用機關軸系裝置의 最適配置에 關한 硏究 (Optimum Alignment of Marine Engine Shaftings by the Finite Element Method)

  • 전효중;박진길;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.3-14
    • /
    • 1978
  • The authors have developed a calculating method of propeller shaft alignment by the finite element method. The propeller shaft is divided into finite elements which can be treated as uniform section bars. For each element, the nodal point equation is derived from the stiffness matrix, the external force vector and the section force vector. Then the overall nodal point equation is derived from the element nodal point equation. The deflection, offset, bending moment and shearing force of each nodal point are calculated from the overall nodal point equation by the digital computer. Reactions and deflections of supporting points of straight shaft are calculated and also the reaction influence number is derived. With the reaction influence number the optimum alignment condition that satisfies all conditions is calculated by the simplex method of linear programming. All results of calculation are compared with those of Det norske Veritas, which has developed a computor program based on the three-moment theorem of the strength of materials. The authors finite element method has shown good results and will be used effectively to design the propeller shaft alignment.

  • PDF

Development of the Discrete-Ordinates, Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation

  • Noh, Taewan
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.605-617
    • /
    • 2000
  • Nodal transport methods are studied for the solution of two dimensional discrete-ordinates, simplified even-parity transport equation(SEP) which is known to be an approximation to the true transport equation. The polynomial expansion nodal method(PEN) and the analytic function expansion nodal method(AFEN)which have been developed for the diffusion theory are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that while the PEN method in diffusion theory can directly be converted without complication, the AFEN method requires a theoretical modification due to the nonhomogeneous property of the transport equation. The numerical results show that the proposed two methods work well with the SEP transport equation with higher accuracies compared with the conventional finite difference method.

  • PDF

Adaptive nodal generation with the element-free Galerkin method

  • Chung, Heung-Jin;Lee, Gye-Hee;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.635-650
    • /
    • 2000
  • In this paper, the adaptive nodal generation procedure based on the estimated local and global error in the element-free Galerkin (EFG) method is proposed. To investigate the possibility of h-type adaptivity of EFG method, a simple nodal refinement scheme is used. By adding new node along the background cell that is used in numerical integration, both of the local and global errors can be controlled adaptively. These errors are estimated by calculating the difference between the values of the projected stresses and original EFG stresses. The ultimate goal of this study is to develop the reliable nodal generator based on the local and global errors that is estimated posteriori. To evaluate the performance of proposed adaptive procedure, the convergence behavior is investigated for several examples.

Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method

  • Zhou, Xiafeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3059-3072
    • /
    • 2022
  • A Jacobian-Free Newton Krylov Two-Nodal Coarse Mesh Finite Difference algorithm based on Nodal Expansion Method (NEM_TNCMFD_JFNK) is successfully developed and proposed to solve the three-dimensional (3D) and multi-group reactor physics models. In the NEM_TNCMFD_JFNK method, the efficient JFNK method with the Modified Incomplete LU (MILU) preconditioner is integrated and applied into the discrete systems of the NEM-based two-node CMFD method by constructing the residual functions of only the nodal average fluxes and the eigenvalue. All the nonlinear corrective nodal coupling coefficients are updated on the basis of two-nodal NEM formulation including the discontinuity factor in every few newton steps. All the expansion coefficients and interface currents of the two-node NEM need not be chosen as the solution variables to evaluate the residual functions of the NEM_TNCMFD_JFNK method, therefore, the NEM_TNCMFD_JFNK method can greatly reduce the number of solution variables and the computational cost compared with the JFNK based on the conventional NEM. Finally the NEM_TNCMFD_JFNK code is developed and then analyzed by simulating the representative PWR MOX/UO2 core benchmark, the popular NEACRP 3D core benchmark and the complicated full-core pin-by-pin homogenous core model. Numerical solutions show that the proposed NEM_TNCMFD_JFNK method with the MILU preconditioner has the good numerical accuracy and can obtain higher computational efficiency than the NEM-based two-node CMFD algorithm with the power method in the outer iteration and the Krylov method using the MILU preconditioner in the inner iteration, which indicates the NEM_TNCMFD_JFNK method can serve as a potential and efficient numerical tool for reactor neutron diffusion analysis module in the JFNK-based multiphysics coupling application.

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup Neutron Diffusion Equation

  • Kim, Hyun-Dae-;Oh, Se-Kee
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1993년도 추계학술발표회 초록집
    • /
    • pp.99-102
    • /
    • 1993
  • A consistent general order nodal method for solving the three-dimensional neutron diffusion equation in (x-y-z) geometry has been derived by using a weighted integral technique and expanding the spatial variable by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes fewer unknown variables in the schemes for iterative-convergence solution than other nodal methods listed in the literatures, and because the method utilizes the analytic solutions of the transverse-integrated one dimensional equations and a consistent approximation for a given spatial variable through all the solution procedures, which renders the use of an approximation for the transverse leakages no longer necessary, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased.

  • PDF