• Title/Summary/Keyword: Nodal

Search Result 1,251, Processing Time 0.032 seconds

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van;Lee, Hak-Eun;Bui, Quoc-Tinh
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.583-605
    • /
    • 2012
  • This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Verification of HELIOS-MASTER System Through Benchmark of Critical Experiments

  • Kim, Ha-Yong;Kim, Kyo-Youn;Oh, Cho-Byung;Lee, Chung-Chan;Zee, Sung-Quun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.22-22
    • /
    • 1999
  • The HELlOS-MASTER code system is verified through the benchmark of the critical experiments that were performed by RRC "Kurchatov Institute" with water-moderated hexagonally pitched lattices of highly enriched Uranium fuel rods (8Ow/o). We also used the same input by using the MCNP code that was described in the evaluation report, and compared our results with those of the evaluation report. HELlOS, developed by Scandpower A/S, is a two-dimensional transport program for the generation of group cross-sections, and MASTER, developed by KAERI, is a three-dimensional nuclear design and analysis code based on the two-group diffusion theory. It solves neutronics model with the AFEN (Analytic Function Expansion Nodal) method for hexagonal geometry. The results show that the HELIOSMASTER code system is fast and accurate enough to be used as nuclear core analysis tool for hexagonal geometry.ometry.

  • PDF

A Study on the Improvement of Stress Field Analysis in a Domain Composed of Dissimilar Materials

  • Song, Kee-Nam;Lee, Jin-Seok
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.202-211
    • /
    • 1998
  • Interfacial stresses at two-material interfaces and initial displacement field over the entire domain are obtained by modifying the potential energy functional with a penalty function, which enforces continuity of the stresses at the interface of two materials. Based on the initial displacement field and interfacial stresses, a new methodology to generate a continuous stress field over the entire domain has been proposed by combining the modified projection method of stress-smoothing and Loubignac's iterative method of improving the displacement field. Stress analysis is carried out on two examples made of dissimilar materials : one is a two-material cantilever composed of highly dissimilar materials and the other is a zirconium-lined cladding tube made of slightly dissimilar materials. Results of the analysis show that the proposed method provides an improved continuous stress field over the entire domain, and accurately predicts the nodal stresses at the interface, while the conventional displacement-based finite element method produces significant stress discontinuities at the interface. In addition, the total strain energy evaluated from the improved continuous stress field converges to the exact value in a few iterations.

  • PDF

Ship Frame Ring Analysis by a Matrix Method (매트릭스법(法)에 의한 선체근골환(船體筋骨環) 해석(解析))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 1973
  • A simple matrix method to analyze the ship's transverse frame ring is proposed. In this approach, the frame ring is treated as a plane frame of uniform slender members. The loadings on the frame consist of buoyancy loads, deck loads and cargo loads. The hatch coaming are considered to deflect under the loads. Because of symmetry, only the half of the frame is analyzed. The method is to obtain the forces and moments on each member. The deformation of the frame can be determined from the nodal displacements. For a sample calculation, a frame ring of a 10,000 ton class cargo liner is analyzed on the IBM 1130 computer. The numerical results obtained are proved to be resonable.

  • PDF

Numerical Simulation of Two-dimensional Breaking Waves (2차원 쇄파의 수치해석)

  • Il-H.,Cho;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 1988
  • In this paper two-dimensional breaking waves of plunger type are numerically simulated both on an even bottom and on a sinusoidally-varying bottom within the framework of potential theory. Based on the boundary integral method derived by Vinje and Brevig, fluid particles on the free surface are treated exactly by using semi-Lagrangian time-stepping. Numerical instability, in particular when the wave front becomes vertical, is discussed and the regriding method of nodal points has been found promising. Numerical accuracy is examined in terms of the wave energy and mass conservations. It is also found that the bottom topography affects significantly and the hydrostatic pressure contributes considerably to the nonoscillating force acting on the bottom, when waves are breaking.

  • PDF

Application of Initial Stress Method on Elasto-plastic Problem in Boundary Element Method (경계요소법의 탄소성문제에 대한 초기응력법의 적용)

  • Soo, Lyong-Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.683-692
    • /
    • 2006
  • The BEM, known as solving boundary value problems, could have some advantages In solving domain problems which are mostly solved by FEM and FDM. Lately, in the elastic-plastic nonlinear problems, BEM could provide the subdomain approach for the region where the plastic deformation could occur and the unknown nodal displacement of this region are added as the unknown of the boundary integral equation for this approach. In this paper, initial stress method was used to establish the formulation of such BEM approach. And a simple rectangular plate having a circular hole was analyzed to verify the suggested method and the result is compared with that from FEM. It is shown that the result of two methods are showing similar stress-strain curves at the root of perforated plate and furthermore the plastic deformation obtained by BEM shows more reasonable behavior than that of FEM.

Efficient Vibration Analysis of Stadium Structure (경기장 구조물의 효율적인 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.475-482
    • /
    • 2001
  • Stadium stand could be led to significant dynamic response due to rhythmical activities of spectator. The dynamic loads induced by spectators movements are considered as static loads in design standard of many countries but these loads have dynamic characteristics. So, it is desirable to apply measured dynamic loads created by spectator activities and to analyze the dynamic behavior of stadium system. The precise investigation of the dynamic loads on stadium structures and the accurate analysis of dynamic behavior of stadium systems are demanded for effective design. As the floor mesh of stadium stand is refined, the number of nodes increase in numerical analysis. So it is difficult to analyze entire stadium structures and much more computer memory are necessary for vibration analysis of stadium system. In this study, the various dynamic loads induced by spectator movements are measured and analyzed. And new modeling method that reduce the nodal points of stadium systems are introduced. Vibration analysis of stadium system is executed to inspect the accuracy and the efficiency of proposed method in this paper.

  • PDF

Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings (반복하중을 받는 철근콘크리트 기둥의 비선형 거동)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Evaluation of coolant density history effect in RBMK type fuel modelling

  • Tonkunas, Aurimas;Pabarcius, Raimоndas;Slavickas, Andrius
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2415-2421
    • /
    • 2020
  • The axial heterogeneous void distribution in a fuel channel is a relevant and important issue during nuclear reactor analysis for LWR, especially for boiling water channel-type reactors. Variation of the coolant density in fuel channel has an effect on the neutron spectrum that will in turn have an impact on the values of absolute reactivity, the void reactivity coefficient, and the fuel isotopic compositions during irradiation. This effect is referring to as the history effect in light water reactor calculations. As the void reactivity effect is positive in RBMK type reactors, the underestimation of water density heterogeneity in 3D reactor core numerical calculations could cause an uncertainty during assessment of safe operation of nuclear reactor. Thus, this issue is analysed with different cross-section libraries which were generated with WIMS8 code at different reference water densities. The libraries were applied in single fuel model of the nodal code of QUABOX-CUBBOX/HYCA. The thermohydraulic part of HYCA allowed to simulate axial water distribution along fuel assembly model and to estimate water density history effect for RBMK type fuel.