• 제목/요약/키워드: Nodal

Search Result 1,243, Processing Time 0.036 seconds

A Novel Network Reduction Method based on Similarity Index between Bus Pairs (모선 간 유사지수에 근거한 새로운 계통축약 기법)

  • Chun, Yeong-Han;Lee, Dong-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.156-162
    • /
    • 2006
  • Transmission zones can be defined based on LMPs. Each zone consists of nodes with similar LMPs, and zonal price is determined by average nodal prices in each zone.[1] Network reduction is still important for the analysis of zonal systems under electricity market environments, even though the computing capability of computer system can deal with entire power systems. The Similarity Index is a good performance measure for the network reduction.[2] It can be applied to the network reduction between zones categorized by the nodal prices. This paper deals with a novel network reduction method between zones based on the similarity Index. Line admittances of reduced network were determined by using the least square method. The proposed method was verified by IEEE 39 bus test system.

Calculation of Nodal Price for Nonoptimal System by Imaginary Constraint Condition (가상제약조건에 의한 비최적 현재운전계통의 모선가격산정)

  • Kim, Y.H.;Lee, Buhm;Choi, S.K.;Lee, S.J.;Lee, J.G.;Oh, S.H.;Kim, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.50-53
    • /
    • 2003
  • This Paper proposes the new method of Nodal Price calculation on nonoptimal condition of power system. It uses Power Flow instead of Optimal Power Flow. We propose a idea of imaginary constraints at the first. And the proposed method is applied to IEEE-30 and results show the effectiveness of the method.

  • PDF

Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 보형구조물의 종.굽힘진동해석)

  • Moon, D.H.;Choi, M.S.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

A Study on the Thermo-elasto-plastic Analysis of Upset Forming (전기 업셋팅 가공시의 열탄소성 해석에 관한 연구)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

In vitro Micropropagation of Rosa hybrid L.

  • Kim Chang-Kil;Oh Jung-Youl;Jee Sun-Ok;Chung Jae-Dong
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.115-119
    • /
    • 2003
  • To determine the appropriate concentrations of nutrients and growth regulators for shoot proliferation and root initiation, several rose hybrid tea cultivars were cultured. Cultured shoot tips and lateral buds from different cultivars proliferated multiple shoots on Murashige and Skoog (MS) medium supplemented with 0 to 4 mg/L BA and 0 to 0.05 mg/L NAA. The ability of the explants to proliferate shoots and initiate roots was affected by genotype, the nodal position of explant, the strength of MS basal medium and growth regulators used. The buds nearest the apex exhibited the slowest rate of development. Most cultivars had the highest shoot proliferation when cultured on MS medium with 2 mg/L BA and 0.01 mg/L NAA, but the degree varied by cultivars. Root development was enhanced by lowering the concentration of MS salts.

Gun System Vibration Analysis using Flexible Multibody Dynamics (유연 다물체 동역학을 이용한 포신-포탑시스템의 진동해석)

  • 김성수;유진영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.166-172
    • /
    • 1997
  • In order to find out relationship between hit probability and gun firing of a moving tank, a turret and flexible gun system model has been developed using the recursive flexible multibody dynamics. For a firing simulation model, nodal coordinates for a finite element model of a flexible gun have been employed to include traverse loads to the gun tube due to moving bullet and ballistic pressure. Modal coordinates are also used to represent the motion induced gun vibration before a firing occurs. An efficient switching technique from modal equations to nodal equations has been introduced for an entire gun firing simulation with rotating turret.

  • PDF

Convergence of the C* family of finite elements and problems associated with forcing continuity of the derivatives at the nodes

  • Bigdeli, B.;Kelly, D.W.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.561-573
    • /
    • 1999
  • A $C^*$-convergence algorithm for finite element analysis has been proposed by Bigdeli and Kelly (1997) and elements for the first three levels applied to planar elasticity have been defined. The fourth level element for the new family is described in this paper and the rate of convergence for the $C^*$-convergence algorithm is investigated numerically. The new family adds derivatives of displacements as nodal variables and the number of nodes and elements can therefore be kept constant during refinement. A problem exists on interfaces where the derivatives are required to be discontinuous. This problem is addressed for curved boundaries and a procedure is suggested to resolve the excessive interelement continuity which occurs.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Comparison between two geometrical nonlinear methods for truss analyses

  • Greco, M.;Menin, R.C.G.;Ferreira, I.P.;Barros, F.B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.735-750
    • /
    • 2012
  • This paper presents a comparison between two different procedures to deal with the geometric nonlinear analysis of space trusses, considering its structural stability aspects. The first nonlinear formulation, called positional, uses nodal positions rather than nodal displacements to describe the finite elements kinematics. The strains are computed directly from the proposed position concept, using a Cartesian coordinate system fixed in space. The second formulation, called corotational, is based on the explicit separation between rigid body motion and deformed motion. The numerical examples demonstrate the performances and the convergence of the responses for both analyzed formulations. Two numerical examples were compared, including a lattice beam with postcritical behavior. Despite the two completely different approaches to deal with the geometrical nonlinear problem, the results present good agreement.

Extension of AFEN Methodology to Multigroup Problems in Hexagonal-Z Geometry

  • Cho, Nam-Zin;Kim, Yong-Hee;Park, Keon-Woo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.142-147
    • /
    • 1996
  • The analytic function expansion nodal (AFEN) method has been successfully applied to two-group neutron diffusion problems. In this paper, the AFEN method is extended to solve general multigroup equations for any type of geometries. Also, a suite of new nodal codes based on the extended AFEN theory is developed for hexagonal-z geometry and applied to several benchmark problems. Numerical results obtained attest to their accuracy and applicability to practical problems.

  • PDF