• Title/Summary/Keyword: Nociceptive action

Search Result 41, Processing Time 0.022 seconds

Antinociceptive and Antiinflammatory Effect of a Diterpene Isolated from the Aerial Part of Siegesbeckia pubescens

  • Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.660-664
    • /
    • 2006
  • The aerial part of Siegesbeckia pubescens (Compositae) has been used to treat rheumatoid arthritis and hypertension in the Oriental medicine. This crude drug has been used without process (SP-0) or with three times-process of steaming and drying (SP-3) or the nine times of that process (SP-9). To search for the antinociceptive anti-inflammatory components from this crude drug, activity-directed fractionation was performed on this crude drug. Since the $CHCl_3$ extract was shown to have a more potent effect than other extracts, it was subjected to silica gel & ODS column chromatography to yield two diterpene compounds (1). Compound 1 was structurally identified as ent-16 (H, 17-hydroxykauran-19-oic acid, which were tentatively named siegeskaurolic acid A. A main diterpene, siegeskaurolic acid A was tested for the antiiflammatory antinociceptive effects using both hot plate- and writhing anti-nociceptive assays and carrageenan-induced anti-inflammatory assays in mice and rats. Pretreatment with siegeskaurolic acid A (20 and 30mg/kg) significantly reduced the stretching episodes, action time of mice and carrageenan-induced edema. These results support that siegeskaurolic acid is a main diterpene responsible for antinociceptive and antiiflammatory action of S. pubescens. In addition, the assays on SP-0, SP-3 and SP-9 produced the experimental results that SP-9 had more significant effects than other two crude drugs. These results suggest that the processing on the original plant may lead to the higher pharmacological effect.

Effect of Capsaicin on the Formalin-induced Fos-like Immunoreactivity in the Spinal Cord of Rat (Formalin에 의해 흰쥐의 척수에서 유도된 Fos-like Immunoreactivity에 미치는 Capsaicin의 영향)

  • 곽지연;오우택
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.404-410
    • /
    • 1999
  • Administration of capsaicin produces acute pain and subsequent long-lasting antinociception. The antinociceptive action site of capsaicin is primarily small afferent nerve fibers. However, the effect of capsaicin on the neural activity of dorsal horn neurons are not well understood. The goal of the present experiment was to study the action of capsaicin on activity of dorsal horn neurons using c-fos immunoreactivity in the spinal cord. Intradermal injection of formalin in the hindpaw produced inflammation in the foot pad and increased the number of cells exhibiting Fos-like immunoreactivity (FLI) in the dorsal horn of the spinal cord, suggesting the hyperalgesia because of the apparent inflammation. Intradermal injection of capsaicin prior to formalin injection significantly reduced the number of cells exhibiting FLI induced by formalin and increased the paw-withdrawal latency, suggesting the hypoalgesic effect of capsaicin. Coadministeration with capsaicin of capsazepine and ruthenium red, antagonists of capsaicin receptor reversed the reduction of formalin-induced FLI by capsaicin. he antagonists also partially antagonized the antinociceptive effect of capsaicin in the paw-withdrawal test. These results further suggest that capsaicin reduces prsponses of dorsal horn neurons to the inflammatory nociceptive stimuli in the periphery. Thus, the reduction of FLI subserves the neural mechanisms underlying analgesia produced by capsaicin.

  • PDF

Effects of Anticonvulsants on Acute and Tonic Pains in the Rat

  • Shin, Hong-Kee
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.97-104
    • /
    • 1996
  • Different neural substrates have been reported to be implicated in analgesic mechanisms in the acute phasic and the sustained tonic pains. To explore the differential antinociceptive action of diphenylhydantoin (DPH) and carbamazepine (CBZ) on the acute phasic and the tonic pains, changes in tail flick latency, hot plate latency and the formalin-induced nociceptive score were assessed prior to and after intraperitoneal administration of DPH (20 & 40 mg/Kg) and CBZ (20 mg/Kg). In 11 rats, CBZ was administered repeatedly for 6 days at the dose of 20 mg/Kg/day. Also studied were the effects of strychnine and picrotoxin (1 mg/Kg, i.p.) on the CBZ-produced changes in the formalin-induced pain behaviors. The tail flick and hot plate ltencies were not changes after administration of DPH and CBZ. However DPH strongly suppressed the formalin-induced tonic pain. A single and the repeated administration of CBZ inhibited both the early phasic and the late tonic pain responses to formalin in n similar manner. On the other hand, the antinociceptive actions of CBZ were not altered by strychnine or picrotoxin. These experimental findings lead to the conclusion that DPH and CBZ have differential antinociceptive action on the acute and the tonic pains and that their antinociceptive actions are independent of the GABA- and glycine-receptors.

  • PDF

Intracisternal Antidepressants Suppressed the Nociceptive Jaw Opening Reflex in Freely Moving Rats

  • Ahn, Dong-Kuk;Kim, Yun-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.307-312
    • /
    • 1998
  • This study was performed to investigate the mechanism of central analgesic effects of antidepressants. Thirty four male rats were anesthetized with pentobarbital sodium (40 mg/kg, ip). A stainless steel guide cannula and a PE tube (PE10) were implanted into the lateral ventricle and cisterna magna area. Stimulating and recording electrodes were implanted into the incisor pulp and anterior digastric muscle. Electrodes were led subcutaneously to the miniature cranial connector sealed on the top of the skull with acrylic resin. The jaw opening reflex was used in freely moving rats, and antidepressants were administered intracisternally in order to eliminate the effects of anesthetic agents on the pain assessment and evaluate the importance of the central action site of antidepressants. After 48 hours of recovery from surgery, digastric electromyogram (dEMG) of freely moving rats was recorded. Electrical shocks (200 ${\mu}sec$ duration, 0.5-2 mA intensity) were delivered at 0.5 Hz to the dental pulp every 2 minute. Intracisternal administration of $15\;{\mu}g$ imipramine suppressed dEMG elicited by noxious electrical stimulation in the tooth pulp to $76{\pm}6%$ control. Intracisternal administration of $30\;{\mu}g$ desipramine, nortriptyline, or imipramine suppressed dEMG remarkably to $48{\pm}2,\;27{\pm}8,\;or\;25{\pm}5%$ of the control, respectively. Naloxone, methysergide, and phentolamine blocked the suppression of dEMG produced by intracisternal antidepressants from $23{\pm}2\;to\;69{\pm}4%,\;from\;32{\pm}5\;to\;80{\pm}9%,\;and\;from\;24{\pm}6\;to\;77{\pm}5%$ of the control, respectively. These results indicate that antidepressants produce antinociception through central mechanisms in the orofacial area. Antinociception of intracisternal antidepressants seems to be mediated by an augmentation of descending pain inhibitory influences on nociceptive pathways.

  • PDF

Hop Extract Produces Antinociception by Acting on Opioid System in Mice

  • Park, Soo-Hyun;Sim, Yun-Beom;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Seo, Jee-Young;Lim, Su-Min;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • In the present study, the antinociceptive profiles of hop extract were characterized in ICR mice. Hop extract administered orally (from 25 to 100 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Antinociceptive action of hop extract was maintained at least for 60 min. Moreover, cumulative response time of nociceptive behaviors induced with intraplantar formalin injection was reduced by hop extract treatment during the 2nd phases. Furthermore, the cumulative nociceptive response time for intrathecal injection of substance P ($0.7{\mu}g$) or glutamate ($20{\mu}g$) was diminished by hop extract. Intraperitoneal pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by hop extract in the writhing test. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an ${\alpha}_2$-adrenergic receptor antagonist) did not affect antinociception induced by hop extract in the writhing test. Our results suggest that hop extract shows an antinociceptive property in various pain models. Furthermore, the antinociceptive effect of hop extract may be mediated by opioidergic receptors, but not serotonergic and ${\alpha}_2$-adrenergic receptors.

Differential actions of intracerebroventricular (ICV) opioid receptor agonists on the activity of dorsal horn neurons (DHN) in the cat spinal cord

  • 오우택;문태상;하태길;고광호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.303-303
    • /
    • 1994
  • ICV infusion of morphine (MOR) produces strong analgesia in man and animals. The analgesic effect is thought to be mediated by the centrifugal inhibtory control, But neural mechanisms of the analgesic effect of ICV morphine are not well understood. For example, in the previous studies, ICV morphine does not inhibit nociceptive transmission in the spinal cord. On the contrary, ICV MOR often excites activity of dorsal horn neuron in the spinal cord. In the present study, we found that ICV MOR had dust actions on activity of dorsal horn neuron that it produced both inhibition and excitation of dorsal horn neurons. Since MOR exerts i Is action via three different types of opioid receptors, we further sought to investigate if there are differential effects of opioid receptor agonists on dorsal horn neurons when administered ICV.

  • PDF

Antioxidant Effects of Berchemia berchemiaefolia in Nerve Pain Models

  • Lee, Gil-Hyun;Hyun, Kyung-Yae;Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.380-387
    • /
    • 2017
  • Berchemia berchemiaefolia (BB) are climbing plants or small to medium-sized trees that live in Africa, Asia and America. We performed the present study to investigate whether oral administration of Berchemia berchemiaefolia extract (BBE) protects SD rats from pain. The SD rat experimental groups were divided into four groups. Two of the animal model groups were fed on BBE (200 mg/kg or 100 mg/kg). We performed oral acute toxicity test to determine the optimal oral dose of BBE. To explore if BBE alleviated pain in the SD rat, we undertook the tail flick latency test and formalin test. Additionally, we conducted the anti-oxidative test. The findings of the present study suggest that Berchemia berchemiaefolia extract exhibits strong antioxidant and analgesic activities.

Review of Pain Potential Substance and Action Mechanism (통증유발물질과 작용기전에 대한 고찰)

  • Bae, Sung-Soo;Kim, Ho-Bong;Lee, Sang-Yong;Kim, Eun-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.205-218
    • /
    • 2001
  • Interpretation of pain by the patients and the observers as well as the methods of treatment remain as varied as are the concepts of pain. The physiologic mechanism of pain is undergoing a serious revision. It is nociceptive receptive mechanism and Melzak concept of gate theory of pain transmission and etc. Therefore pain depend on the evaluator's learning, experience, or specialty.

  • PDF

Health Promoting Effect of Lactoferrin from Milk

  • Hoshino, Tatsuo;Shimizu, Hirohiko;Ando, Kunio
    • 한국유가공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.1-9
    • /
    • 2005
  • The ubiquitous presence of lactoferrin (LF) receptor in human as reported by the research group of Prof, Bo Lonnerdal, Univ. California, encouraged us to search for the unknown physiological roles of LF. Under the collaboration with Prof. Etsumori Harada, Tottori Univ., and his research group, we have found two novel biological activities of LF as the control of the lipid metabolism and the effect on the central nervous system. Relating to the lipid metabolism, LF could, in animal experiments, reduce triglyceride and total cholesterol both in blood and liver. LF increased plasma HDL-C and lowered LDL-C. In the central nervous system, LF showed anti-nociceptive activity mediated by ${\mu}$-opioid receptor in the rat spinal cord. LF enhanced analgesic action of morphine synergistically via nitric oxide synthesis. LF showed opioid-mediated suppressive effect on distress induced by maternal separation in rat pups.

  • PDF

The Role of Adrenergic and Cholinergic Receptors on the Antinociception of Korean Red Ginseng in the Spinal Cord of Rats (쥐의 척수강 내로 투여한 고려 홍삼의 항통각효과에 대한 아드레날린성 및 콜린성 수용체 역할)

  • Kim, Se Yeol;Yoon, Myung Ha;Lee, Hyung Gon;Kim, Woong Mo;Lee, Jae Dam;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.21 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Background: Experimental evidence indicates that ginseng modulate the nociceptive transmission. Authors examined the role of adrenergic and cholinergic receptors on the antinociceptive action of Korean red ginseng against the formalin-induced pain at the spinal level. Methods: Catheters were inserted into the intrathecal space of male Sprague-DawIey rats. Fifty ${\mu}l$ of 5% formalin solution was injected to the hindpaw for induction of pain and formalin-induced pain (flinching response) was observed. The role of spinal adrenergic and cholinergic receptors on the effect of Korean red ginseng was assessed by antagonists (Prazosin, yohimbine, atropine and mecamylamine). Results: Intrathecal Korean red ginseng produced a dose-dependent suppression of the flinching response in the rat formalin test. All of prazosin, yohimbine, atropine and mecamylamine antagonized the antinociception of Korean red ginseng. Conclusions: Spinal Korean red ginseng is effective against acute pain and facilitated pain state evoked by formalin injection. All of alpha 1, alpha 2, muscarinic and nicotinic receptors may play an important role in the antinociceptive action of Korean red ginseng at the spinal level.