• Title/Summary/Keyword: Noah-MP

Search Result 5, Processing Time 0.022 seconds

Comparison of Crop Growth and Evapotranspiration Simulations between Noah Multi Physics Model and CERES-Rice Model (Noah Multi Physics 모델과 CERES-Rice 모델의 작물 생육 및 증발산 모의 비교)

  • Kim, Kwangsoo;kang, Minseok;Jeong, Haneul;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.282-290
    • /
    • 2013
  • Biophysical and biochemical processes through which crops interact with the atmosphere have been simulated using land surface models and crop growth models. The Noah Multi Physics (MP) model and the CERES-Rice model, which are a land surface model, and a crop growth model, respectively, were used to simulate and compare rice growth and evapotranspiration (ET) in the areas near Haenam flux tower in Korea. Simulations using these models were performed from 2003 to 2012 during which flux measurements were obtained at the Haenam site. The Noah MP model failed to simulate the pattern of temporal change in leaf area index (LAI) after heading. The simulated aboveground biomass with the Noah MP model was underestimated by about 10% of the actual biomass. The ET simulated with the Noah MP model was as low as 21% of those with the CERES-Rice model. In comparison with actual ET measured at Haenam flux site, the root mean square error (RMSE) of the Noah MP model was 1.8 times larger than that of the CERES-Rice model. The Noah MP model seems to show less reliable simulation of crop growth and ET due to simplified phenology processes and assimilates partitioning compared with the CERES-Rice model. When ET was adjusted by the ratio between leaf biomass simulated using CERES-Rice model and Noah MP model, however, the RMSE of ET was reduced by 30%. This suggests that an improvement of the Noah MP model in representing rice growth in paddy fields would allow more reliable simulation of matter and energy fluxes.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.

Analysis of Hydrologic Parameters of Ungaged Area Using NASA LIS (NASA LIS를 이용한 미계측 지역의 수문인자 산출)

  • PARK, Gwang Ha;HWANG, Eui-Ho;Jung, Kwan Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.115-122
    • /
    • 2018
  • 수문순환 과정 중 일부인 유출량을 산정하기 위해서는 지형학적 변수, 강우량, 토양수분, 증발산량 등의 인자들이 필요하다. 본 연구에서는 미계측 지역의 유출량 산정을 위한 주요 인자인 토양수분과 증발산량을 지표면 모델을 통해 산출하고자 한다. 사용한 시스템은 미국 NASA에서 개발한 LIS(Land Information System) 프레임워크이며 LIS에 적용된 지표면 모델 중 Noah-MP을 초기 매개변수로 사용하였다. 입력 자료는 전지구 범위로 제공되는 자료를 사용하여 남한 지역을 대상으로 토양수분 및 증발산량을 산출하고 지상 관측 자료, 원격탐사 기반의 토양수분과 증발산량을 통해 정확도를 평가하였고 ASOS 관측 자료를 내삽하여 산출된 토양수분 및 증발산량의 정확도도 평가하였다. 남한 지역을 대상으로 정확도를 평가한 후 대표표적 미계측 지역인 북한을 대상으로 토양수분 및 증발산량을 산출하였다. LIS의 Noah-MP 지표면 모델로 토양수분 및 증발산량을 산출한 결과 ASOS를 내삽하여 산출한 결과가 설마천의 경우 정확도는 오히려 낮아졌고 청미천, 서산의 정확도는 높아졌다. 이는 초기 매개변수 설정을 이용한 것과 전지구 범위의 자료를 사용하여 토양수분 및 증발산량을 산출하여 발생된 오차이며 매개변수 최적화 및 고해상도의 입력자료를 사용하면 보다 높은 정확도를 확보할 수 있다. 이를 통해 미계측 지역에서도 충분히 활용 가능한 토양수분 및 증발산량을 산출하여 유출량을 산정할 수 있을 것으로 사료된다.

  • PDF

Calculation of Soil Moisture and Evaporation on the Korean Peninsula using NASA LIS(Land Information System) (NASA LIS(Land Information System)을 이용한 한반도의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;YU, Wan-Sik;HWANG, Eui-Ho;JUNG, Kwan-Sue
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.83-100
    • /
    • 2020
  • This study evaluated the accuracy of soil moisture and evapotranspiration by calculating the hydrological parameters in Korean peninsula using Land Information System(LIS) developed by US NASA. We used Noah-MP surface model to calculate hydrological parameters, and used MERRA2(Modern-Era Retrospective analysis for Research and Applications, Version 2) for hydrological forcing data. And, International Geosphere-Biosphere Program(IGBP) and University of Maryland(UMD) land cover maps were applied to compare the output accuracy, and Automated Synoptic Observing System(ASOS) of KMA was used as ground observation data. In order to evaluate the accuracy of the output data, the correlation coefficient(CC), BIAS, and efficiency factor (NSE, Nash-Sutcliffe Efficiency) were analyzed with soil moisture and evapotranspiration by ASOS ground observation data. As a result, the correlation coefficient of soil moisture using IGBP was 0.56 on average, and evapotranspiration was about 0.71. On the other hand, soil moisture using UMD was 0.68 on average and evapotranspiration was about 0.72, and the correlation coefficient by UMD was evaluated as high accuracy compared to the results by using IGBP. The correlation coefficient of soil moisture was an average of 0.68 and evapotranspiration was an average of 0.72 when MERRA2 was used as hydrological forcing data. On the other hand, the soil moisture applied with ASOS was an average of 0.66, and evapotranspiration was an average of 0.72. It is judged that the ASOS point data was reanalyzed as 0.65°× 0.5°grids, which is the same spatial resolution with MERRA2, resulting in differences in accuracy depending on the region.