• 제목/요약/키워드: No-Slip

검색결과 290건 처리시간 0.027초

나노 콜로이달 실리카를 이용한 포장용지의 미끄럼특성 제어 (The Control of Anti-slip Characteristics of Packaging Paper Using Nano-colloidal Silica)

  • 이원노;김형진
    • 펄프종이기술
    • /
    • 제37권3호
    • /
    • pp.33-40
    • /
    • 2005
  • In this study, a nano-colloidal silica sol was applied to control the anti-slip property by spraying on kraft paper. Two kinds of nano-colloidal silica sol which have cationic and anionic charge were applied in kraft paper, and the friction and physical strength properties of kraft paper were investigated. The application of colloidal silica sol on wet web in wet-end process by spraying method was tried to improve the friction property and to avoid the general problems of machine contaminations caused by the scattering of sprayed silica particles in dryer part. The physical properties of sheet were also improved by the application of wet web spraying method, and the optimum conditions of wet web spraying operation were closely related with the conditions of pH and electrical charge of wet web and silica sol.

변위비례식 마찰댐퍼의 특성에 관한 연구 (A Study on the Characteristics of an Amplitude Proportional Friction Damper)

  • 박동훈;최명진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.717-720
    • /
    • 2002
  • An Amplitude Proportional Friction Damper (APFD) system is considered in order to improve the stick-slip characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. The free vibration analysis on an 1-DOF system has conducted to demonstrate the characteristics of the APFD system and the results show that the APFD system has similar damping characteristics to the viscous damper system. It is concluded that the APFD system may become a cost effective substitution for the viscous damper and it also has certain advantages over Coulomb damper system since the APFD system can be designed to work with no stick-slip.

  • PDF

반복변형된 Cu 및 Cu-Al 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.389-394
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AEM) was shown to be the powerful tool for nano-scale characterization of material surfaces. Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform, and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

반복변형된 동 및 동알루미늄 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.67-72
    • /
    • 1999
  • Scanning probe Microscope(SPM) such as Scanning Tunneling Microscope(STM) and Atomic Force Microscope(AFM) was shown to be the powerful tool for nano-scale characterization of material surfaces Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform. and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

  • PDF

습식 다단 인발공정 해석 프로그램 개발 (Development of Analysis Program for Multi-Pass Wet Wire Drawing Process)

  • 이상곤;김병민;김민안;박병권
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.216-219
    • /
    • 2001
  • The production of fine wire through multi-pass wet wire drawing process would be impossible with no backtension at inlet of dies. Backtension is affected by many process parameters, such as dies reduction, coiling number of wire at capstan, machine constant, slip between wire and capstan, characteristic of lubricant and so on. Up to date, dies design and dies pass schedule of multi-pass wet wire drawing process have performed by trial and error of expert in the Industrial field without consideration of quantitative relation among process variables. Thus study investigates the multi-pass wet wire drawing process considering the relation among process variables, such as dies reduction, coiling number of wire at capstan, machine constant, slip between wire and capstan, etc. And analysis program which can analyze many important process values(drawing force, backtension force, slip rate, slip velocity rate, etc) for die design and dies pass schedule of multi-pass wet wire drawing process was developed.

  • PDF

섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석 (Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet)

  • 장수학;김석호;백남주;김이곤
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.163-168
    • /
    • 1991
  • 본 연구에서는 여러가지의 성형조건에서 미끄름을 지배하는 상수를 측정하고, 유동 선단(flow front)에 미치는 이 상수의 영향을 검토한다. 또 측정된 상수를 가 지고 사각형 및 중공 원형 평판 압축성형에 대해서 2차원 유한 요소해석을 하고 실험 결과와 비교 검토한다.

Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum

  • Sadoughi, Alireza;Ebrahimi, Mohammad;Moallem, Mehdi;Sadri, Saeid
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.228-238
    • /
    • 2008
  • Many induction motor broken bar diagnosis methods are based on evaluating special components in machine signals spectrums. Current, power, flux, etc are among these signals. Frequencies related to a broken rotor fault are slip dependent, therefore, correct diagnosis of fault - especially when obtrusive frequency components are present - depends on accurate determination of motor velocity and slip. The traditional methods typically require several sensors that should be pre-installed in some cases. This paper presents a diagnosis method based on only a vibration sensor. Motor velocity oscillation due to a broken rotor causes frequency components at twice slip frequency difference around speed frequency in vibration spectrum. Speed frequency and its harmonics as well as twice supply frequency, can easily and accurately be found in a vibration spectrum, therefore th motor slip can be computed. Now components related to rotor fault can be found. It is shown that a trained neural network - as a substitute for an expert person - can easily categorize the existence and the severity of a fault according to the features extracted from the presented method. This method requires no information about th motor internal and has been able to diagnose correctly in all the laboratory tests.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

나노 채널에서의 표면 거칠기와 경계 습윤의 효과 (Effects of Surface Roughness and Interface Wettability in a Nanochannel)

  • 추연식;서인수;이상환
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.