• Title/Summary/Keyword: No Load Consumption Power

Search Result 51, Processing Time 0.025 seconds

Effect of Pulp Properties on the Power Consumption in Low Consistency Refining

  • LIU, Huan;DONG, Jixian;QI, Kai;GUO, Xiya;YAN, Ying;QIAO, Lijie;DUAN, Chuanwu;ZHAO, Zhiming
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.869-877
    • /
    • 2020
  • The power consumption in the low consistency (LC) refining is an important indicator for the optimal control of the process and it is composed of the net power and the no-load power. The refining efficiency and process characterization of LC refining are directly affected by power consumption. In this paper, the effect of pulp consistency and average fiber length on the power consumption and refining efficiency were studied through the LC refining trials conducted by an experimental disc refiner. It is found that the curve of power-gap clearance can be divided into constant power section, power reduction section, and power increase section. And the no-load power and the adjustable domain of loading applied by the refining plates will increase as the increase of pulp consistency, while the increase of net power is larger than that of no-load power which makes the increasing of refining efficiency. Meanwhile, the adjustable domain of loading applied by the refining plates can be slightly improved by increasing the average fiber length, but its effect on the no-load power in the LC refining process can be neglected. The study of power consumption in LC refining is of positive significance for the proper selection of pulp properties in LC refining, in-depth exploration of refining mechanism, and energy consumption reduction in refining.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

Technical Feasibility of Ethanol as a Fuel for Farm Diesel Engines (농용(農用) 디이젤 엔진 연료(燃料)로서의 에타놀 이용(利用)에 관(關)한 연구(硏究))

  • Ryu, Kwan Hee;Bae, Yeong Hwan;Yoo, Soo Nam
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1982
  • The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.

  • PDF

An Application of the Force Rllipsoid to the Ooptimal Load Distribution of Cooperating Robots (힘 타원을 이용한 다중 협력 작업 로봇의 최적 부하 분배에 관한 연구)

  • 서창원;최명환;조혜경;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.162-167
    • /
    • 1991
  • The manipulability ellipsoid and the force ellipsoid for a single robot are extended to the case of a multi-robot system. The force ellipsoid is applied to solve the optimal load distribution for the multi-robot system. Two cases are considered in solving the optimal load distribution. In one case, there are no constraints on the joint torques, and the analytic solution ;a given. In the other case, the torque constraints are given in terms of the maximum power consumption, and the algorithm for the solution is proposed.

  • PDF

The Study on the Control Performance of a Screw Type Super-charger for Automotive Use (자동차용 스크류형 과급기의 제어성능에 관한 연구)

  • 배재일;배신철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2003
  • Boosting of engine power by using Turbo- or Super-charger is a solution to comply with $CO_2$-regulation in Europe. Turbo-charger is now playing a major role in the field of charging system thank to its technical advantages such as no demand of operation power from engine. A mechanically driven Super-charger, however, is now popular due to quick speed response to change of the driving mode-high engine torque even at low engine speed. Since Super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of Turbo-charger. This negative point is still an obstacle to the wide use of Super-charger. This study aims to develop power control concept to achieve the minimization of operation power when it is not necessary to charge at idling or part load driving condition. A screw type Super-charger was modified in design partially and adapted an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of Super-charger and result in improvement of fuel consumption.

Development of a screw type super-charger for part load control (부분부하제어를 위한 스크류형 과급기 개발)

  • Bae, Jae-Il;Bae, Sin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.353-358
    • /
    • 2001
  • Turbo-charging or Super-charging has been used to boost engine power for Gasoline Engine and Diesel Engine came to the world at the beginning of $20^{th}$ century. So far Turbo-Charger has enjoyed a high reputation in the charging filed for its technical advantages such as no demand of operation power from engine and an excellent charging effect in the event of a static operation at mid- and high engine speed. A mechanically driven Super-Charger, however, is now emerging in order to meet demands of the age of speed such as high engine power for a quick change of the driving mode - high engine torque even at low engine speed. Since Super-Charger needs driving power from engine, it cannot improve its relatively higher fuel consumption against that of Turbo-Charger. This negative point is still an obstacle to the wide use of Super-Charger. Super-Charger using Screw-type compressor which has already had a considerable base in air compressor market will fulfill this purpose of improving fuel consumption by minimizing operation power owing to no charging at idling or partially loading driving. This study aims to develop power control concept to achieve this minimization of operation power.

  • PDF

Analysis of Energy Consumption and Sleeping Protocols in PHY-MAC for UWB Networks

  • Khan, M.A.;Parvez, A.Al;Hoque, M.E.;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12B
    • /
    • pp.1028-1036
    • /
    • 2006
  • Energy conservation is an important issue in wireless networks, especially for self-organized, low power, low data-rate impulse-radio ultra-wideband (IR-UWB) networks, where every node is a battery-driven device. To conserve energy, it is necessary to turn node into sleep state when no data exist. This paper addresses the energy consumption analysis of Direct-Sequence (DS) versus Time-Hopping (TH) multiple accesses and two kinds of sleeping protocols (slotted and unslotted) in PHY-MAC for Un networks. We introduce an analytical model for energy consumption or a node in both TH and DS multiple accesses and evaluate the energy consumption comparison between them and also the performance of the proposed sleeping protocols. Simulation results show that the energy consumption per packet of DS case is less than TH case and for slotted sleeping is less than that of unslotted one for bursty load case, but with respect to the load access delay unslotted one consumes less energy, that maximize node lifetime.

Effects of Binder-Sheaf Size on Threshing Performance and Load Characteristics of an Auto Feed Thresher (바인더 볏단의 크기가 자동탈곡기(自動脱糓機)의 탈곡성능(脱糓性能) 및 부하특성(負荷特性)에 미치는 영향(影響))

  • Yoo, Soo Nam;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.60-72
    • /
    • 1981
  • This study was carried out to find out the effects of the sheaf size of paddy harvested by the binders on the threshing performance, load characteristics and power requirement of an auto-feed thresher. The results of the study are summarized as follows: 1. The seperating performance of the thresher appeared to be satisfactory for all the sheaf sizes although the amount of rubbishes and empty grains slightly increased with the sheaf size of paddy. 2. There was no significant difference in grain output quality of the thresher among the three sheaf sizes. However, the amount of grains left unthreshed increased with the sheaf size. In the case of the largest sheaf size with the feed rate of 780kg/h, it exceeded the limit set by the national inspection regulations. 3. The position of the feed-chain rail gave a significant effect on the power requirement of the thresher. At the feed rate of 780kg/h, the net power required to convey sheafs through the feed chain was in the range of 0.37 to 0.50 PS for the middle and lowest position of feed-chain rail, and there was no significant difference among the sheaf sizes. At the highest position, however, it appeared that the smallest sheaf required more power than the others. The net power requirements at this position were 1.03, 0.59. 0.65 PS for the smallest, medium and largest sheafs respectively. 4. The torques of both the thresher and the engine shaft increased with the feed rate and were not affected by the sheaf size for the lower two feed rates of 520 and 780kg/h. At the highest feed rate of 1,040 kg/h, however, they were affected by the sheaf size. In this case, the medium sheaf size gave lower values than the others. 5. The variations in the thresher and the engine torque increased with the feed rate and were not affected by the sheaf size for the feed rate of 520kg/h. At the feed rate of 780kg/h, however, they increased with sheaf size. And at the feed rate of 1,040 kg/h, the torque variations increased greatly for all the sheaf sizes due to an over-load operating condition. 6. It appeared that the average and maximum power requirements of the thresher increased with the feed rate. But, there was no significant difference in power requirement among the sheaf sizes for the lower two feed rates. 7. The threshing efficiency of the thresher was in the range of 214-249 kg/ps.h with the feed rates of 520 and 780 kg/h, and it was not affected by both the sheaf size and the feed rate. At the feed rate of 1,040 kg/h, however, it decreased to as low as 171-174 kg/ps.h because of a sudden increase in power requirement. 8. The average power requirements of the engine were slightly higher than those of the thresher due to the slippage of flat belt between the thresher and engine. It appeared that power transmission from the engine to the thresher was maintained properly since slippages were moderately low with the range of 2.78 to 6.51% throughout the tests. 9. The specific fuel consumption of the engine (diesel 8PS) decreased as the feed rate increased. However, there was no significant reduction in specific fuel consumption as the feed rate increased above 780 kg/h.

  • PDF

Development of Variable Duty Cycle Control Method for Air Conditioner using Artificial Neural Networks (신경회로망을 이용한 에어컨의 가변주기제어 방법론 개발)

  • Kim, Hyeong-Jung;Doo, Seog-Bae;Shin, Joong-Rin;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.399-409
    • /
    • 2006
  • This paper presents a novel method for satisfying the thermal comfort of indoor environment and reducing the summer peak demand power by minimizing the power consumption for an Air-conditioner within a space. Korea Electric Power Corporation (KEPCO) use the fixed duty cycle control method regardless of the indoor thermal environment. However, this method has disadvantages that energy saving depends on the set-point value of the Air-Conditioner and direct load control (DLC) has no net effects on Air-conditioners if the appliance has a lower operating cycle than the fixed duty cycle. In this paper, the variable duty cycle control method is proposed in order to compensate the weakness of conventional fixed duty cycle control method and improve the satisfaction of residents and the reduction of peak demand. The proposed method estimates the predict mean vote (PMV) at the next step with predicted temperature and humidity using the back propagation neural network model. It is possible to reduce the energy consumption by maintaining the Air-conditioner's OFF state when the PMV lies in the thermal comfort range. To verify the effectiveness of the proposed variable duty cycle control method, the case study is performed using the historical data on Sep. 7th, 2001 acquired at a classroom in Seoul and the obtained results are compared with the fixed duty cycle control method.