• 제목/요약/키워드: Nitrous oxide ($N_20$)

검색결과 35건 처리시간 0.018초

The Effects of Zeolite on Ammonia, Nitrous Oxide Emission, and Forage Yield from Pig Slurry Applied to the Forage Corn Cropping

  • Choi, Ah-Reum;Park, Sang-Hyun;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제40권4호
    • /
    • pp.274-278
    • /
    • 2020
  • Pig slurry (PS) is the most applicable recycling option as an alternative organic fertilizer. The application of pig slurry has the risk of air pollution via atmospheric ammonia (NH3) and nitrous oxide (N2O) emission. The zeolite has a porous structure that can accommodate a wide variety of cations, thus utilizing for the potential additive of deodorization and gas adsorption. This study aimed to investigate the possible roles of zeolite in mitigating NH3 and N2O emission from the pig slurry applied to the maize cropping. The experiment was composed of three treatments: 1) non-N fertilized control, 2) pig slurry (PS) and 3) pig slurry mixed with natural zeolite (PZ). Both of NH3 and N2O emission from applied pig slurry highly increased by more than 3-fold compared to non-N fertilized control. The NH3 emission from the pig slurry was dominant during early 14 days after application and 20.1% of reduction by zeolite application was estimated in this period. Total NH3 emission through whole period of measurement was 0.31, 1.33, and 1.14 kg ha-1. Nitrous oxide emission in the plot applied with pig slurry was also reduced by zeolite treatment by 16.3%. Significant increases in forage and ear yield, as well as nutrient values were obtained by pig slurry application, while no significant effects of zeolite were observed. These results indicate that the application of zeolite and pig slurry efficiently reduces the emission of ammonia and nitrous oxide without negative effects on maize crop production.

아디픽산 제조공정으로부터 발생되는 N2O에 대한 배출제어기술 (Emission Control Technologies for N2O from Adipic Acid Production Plants)

  • 김문현
    • 한국환경과학회지
    • /
    • 제20권6호
    • /
    • pp.755-765
    • /
    • 2011
  • Nitrous oxide ($N_2O$) is one of six greenhouse gases listed up in the Kyoto Protocol, and it effects a strong global warming because of its much greater global warming potential (GWP), by 310 times over a 100-year time horizon, than $CO_2$. Although such $N_2O$ emissions from both natural and anthropogenic sources occur, the latter can be controlled using suitable abatement technologies, depending on them, to reduce $N_2O$ below acceptable or feasible levels. This paper has extensively reviewed the anthropogenic $N_2O$ emission sources and their related compositions, and the state-of-the-art non-catalytic and catalytic technologies of the emissions controls available currently to representative, large $N_2O$ emission sources, such as adipic acid production plants. Challengeable approaches to this source are discussed to promote establishment of advanced $N_2O$ emission control technologies.

하수처리수의 방류를 받는 하천감조부에서의 N2O생성 (Production of Nitrous Oxide in Tatara Estuary Receiving Treated Wastewater)

  • 이승윤
    • 한국수자원학회논문집
    • /
    • 제42권8호
    • /
    • pp.631-641
    • /
    • 2009
  • 본 연구는 부영양화되어 있는 하구감조역에서의 $N_2O$생성과 거동을 파악하는 것을 목적으로 도시역에서의 N2O발생에 착안하여 그 중에서도 인위적 임팩트가 크다고 판단되는 하수처리수 생활폐수 등이 유입되는 도시하천감조역을 대상으로 현지 정점조사를 실시하여 수역의 사계절에 걸친 각 질소성분의 농도변화와 flux를 상세히 파악하고 저질간극수 중의 연직분포를 측정하였다. 그 결과, 완혼합이고 염수쐐기설(楔)가 형성되는 Tatara천(川)에서 하수처리수는 해수의 혼합형태의 영향을 크게 받고 고농도수괴(水塊)로서 표층을 이동하고 있으며, 이 수역의 질소변환기구 및 $N_2O$생성과정에 큰 영향을 미치고 있는 것이 밝혀졌다. 이 수역에서 관측된 $N_2O$농도는 1.8-20.9 $\mu M$로서 대기중의 포화농도와 담수중의 포화농도를 고려하면 항상 포화농도상태이며, 주발생원은 수역저토였다. 저질간극수 중의 각 질소성분의 농도분포는 호소와 인근해역에서의 분포와는 달리 분자확산 이외의 수송경로가 있다는 것이 시사되었다.

리도카인을 이용한 경막외 마취시 Nitrous Oxide가 감각차단에 미친 영향 (Nitrous Oxide Enhances the Level of Sensory Block by Epidural Lidocaine)

  • 구영권;우수영;조강희
    • The Korean Journal of Pain
    • /
    • 제12권1호
    • /
    • pp.43-47
    • /
    • 1999
  • Backgroud: Systemic administration of opioid can prolong the duration of epidural anesthesia. The authors examined the effect of nitrous oxide ($N_2O$) on the level of sensory block induced by epidural lidocaine. Methods: Twenty minutes after epidural injection of 2% lidocaine (below 70 years : 20 ml, 70 years and above : 15 ml), the level of sensory block was assessed (2nd stage). Patients were randomly assigned to receive either medical air (control group, n=15) or 50% $N_2O$ in oxygen ($N_2O$ group, n=15) for 10 minutes, the level of block was reassessed (3rd stage). Pateints were given room air (control group) or 100% oxygen for 5 minutes and room air for 5 minutes ($N_2O$ group), and the level of block was reassessed (4th stage). Results: At the 3rd stage, $N_2O$ group showed 4.3 cm cephalad increase in the level of sensory block (p=0.005), but control group revealed 1.43 cm regression. After discontinuation of gas, the level of block regressed in both group (p=0.000). At the 4th stage, $N_2O$ group revealed 3.5 cm cephalad increase (p=0.048) and control group 1.97 cm regression (p=0.001) as compared with the 2nd stage. Conclusions: The level of sensory block induced by epidural lidocaine was significantly increased cephalad by concommitant use of 50% $N_2O$ for 10 minutes.

  • PDF

테들러백과 알루미늄-폴리에스터백에 보관된 저농도 아산화질소의 유실율 비교 (Comparison for Loss Rate of Low Concentration Nitrous Oxide in Tedlar Bag and Aluminium-Polyester Bag)

  • 이우찬;박성빈;고영환;현승민;윤균덕
    • 한국기후변화학회지
    • /
    • 제8권1호
    • /
    • pp.31-39
    • /
    • 2017
  • The emission quantity of nitrous oxide is second largest among non-$CO_2$ greenhouse gas in Korea. In this study, we investigated loss rate of nitrous oxide which was filled in PVF and Al-PE bag as time goes on. Concentrations of tested samples were about 25 ppmv, 50 ppmv, 75 ppmv prepared by standard reference gas. In case of all experiments, loss rate of PVF bag was higher than Al-PE bag. After 18 days, loss rate of PVF bag was from 29.7% to 38.6% while Al-PE bag was from 21.7% to 23.7%. Especially the differential growed bigger when initial concentration of $N_2O$ in PVF bag was lower. And we also studied the effect of cock opening/closing procedures on loss rate. Prepared samples in experimental group were analyzed several times for 20 days and samples in control group were analysed only 1 time after 20 days. The experimental results showed that cock opening/closing procedures appeared to have little impact on loss rate.

디젤엔진에서 배기가스 재순환 방법을 이용한 아산화질소의 배출률 저감 (Reduction of Nitrous Oxide Emission by EGR Method on Diesel Engine)

  • 유동훈
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.16-21
    • /
    • 2015
  • Nitrous oxide($N_2O$) concentration in the atmosphere has been constantly increased by the human activities with industrial growth after the industrial revolution. One of factors to increase $N_2O$ concentration in the atmosphere is the $N_2O$ emission caused by the combustion of marine fuel. Especially, a sulfur component included in marine fuel oils is known as increasing the $N_2O$ formation in diesel combustion. Form this point of view, $N_2O$ emission from a ship is not negligible. On the other hand, Exhaust gas recirculation(EGR) that have thermal, chemical and dilution effect is effective method for reducing the NOx emission. In this study, an author investigated $N_2O$ reduction by using EGR on a direct injection diesel engine. The test engine was a 4-stroke diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of the engine was a fixed load of 75%. The experimental oil was a blend-fuel that were adjusted with sulfur ratio of 3.5%, and EGR ratio of 0%, 10%, 20% and 30%. In conclusion, diesel fuel that contained 3.5% sulfur component increased $SO_2$ emission in exhaust gas, and increment of EGR ratio reduced NO emission. Moreover, $N_2O$ emission was decreased as over 50% at EGR ratio of 10% and reduced 100% at EGR ratio of 30% compared with $N_2O$ emission of 0% EGR ratio.

농경지에서 무경운 및 녹비 투입에 따른 아산화질소 배출특성 (Effect of no-tillage and green manure practices on the nitrous oxide emission from cropland)

  • 이선일;김건엽;이종식;최은정
    • 환경생물
    • /
    • 제37권3호
    • /
    • pp.309-316
    • /
    • 2019
  • 농경지는 농업부문에서 발생하는 온실가스인 N2O의 배출원이다. 따라서 농경지에서 N2O를 줄일 수 연구가 필요하며, 본 연구에서는 농경지에 작물재배 시 무경운기술을 적용하고, 녹비작물로서 호밀과 헤어리배치를 각각 투입하여 N2O 배출량 비교 평가하였다. 재배 기간 중 토양에 질소원이 공급된 초기에 배출량이 높았으며, 토양온도는 20~25℃, 수분함량은 20~30% 범위에서 N2O 배출량이 높았다. 작물재배기간 동안 경운 유무와 투입된 질소원에 따른 처리구간 통계적 유의한 차이가 발생했다. 농경지 토양에서 배출되는 N2O는 무경운을 통해 CF, HV 그리고 RY 처리구에서 각각 51.8%, 31.7% 그리고 59.6% 감축되었다. 또한 무경운 헤어리배치(HV-NT) 처리구에서 관행(CF-CT) 처리구 대비 59.0% N2O 배출을 저감할 수 있었다. 헤어리배치를 투입함으로써 화학비료 사용량을 줄일 수 있고, 무경운을 통해 토양 교란을 방지하여 농경지 토양에서 배출되는 N2O를 저감할 수 있었다. 이러한 감축기술에 대한 온실가스 저감효과를 평가하는 연구와 향후 온실가스 감축사업과 연계할 수 있도록 검인증 방법을 포함한 방법론 구축 등이 필요하다. 이후 농업분야 온실가스 감축사업인 배출권거래제 외부사업, 농업농촌 자발적 온실가스 감축사업, 저탄소농축산물 인증제 등과 연계하여 농업현장에서 활용할 수 있도록 해야 한다.

Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성 (The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters)

  • 김득수;오진만
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

휴경기간 녹비재배 농경지 토양에서 아산화질소 및 이산화탄소 배출특성 (Nitrous oxide and carbon dioxide efflux of cropland soil during fallow season)

  • 이선일;김건엽;최은정;이종식;정현철
    • 한국농림기상학회지
    • /
    • 제20권4호
    • /
    • pp.386-396
    • /
    • 2018
  • 농경지는 농업부문에서 배출되는 온실가스인 아산화질소와 이산화탄소의 공급원이다. 하지만 대부분 농경지 온실가스 배출연구는 경작기에 집중되어 있고, 휴경기 동안 거의 수행되지 않았다. 따라서 본 연구는 동절기 휴경 농경지 $N_2O$$CO_2$ 배출량과 주요 환경요인과의 유의확률 및 경작기 배출량과 비교하였다. 휴경기동안 녹비작물로써 H.V.와 Rye를 재배하였을 때, $N_2O$$0.014{\sim}2.956mg\;N_2O\;m^{-2}{\cdot}d^{-1}$ 범위로 배출되었으며, 누적량은 대조구, H.V.처리구, Rye처리구에서 각각 104.4, 85.8 그리고 $85.0mg\;N_2O\;m^{-2}$ 배출되었다. 대조구에서 배출량이 가장 높았으며, H.V. 및 Rye 처리구는 비슷했다. 누적 이산화탄소 배출량은 대조구, H.V. 처리구, Rye 처리구에서 각각 293.1, 242.2 그리고 $275.2g\;CO_2\;m^{-2}$ 배출되었다. 그리고 휴경기간동안 $N_2O$$CO_2$ 일 평균배출량은 경작기의 각각 28.3%, 27.4% 배출되었다.

고구마 재배 밭토양에서 가축분퇴비의 시용량이 아산화질소 발생에 미치는 영향 (Effect of Application Rate of Composted Animal Manure on Nitrous Oxide Emission from Upland Soil Supporting for Sweet potato)

  • 김성은;루앙카르스 추안핏;이현호;박혜진;홍창오
    • 한국환경농학회지
    • /
    • 제37권3호
    • /
    • pp.172-178
    • /
    • 2018
  • BACKGROUND: Composted animal manure applied to the arable soil for improving soil quality and enhancing crop productivity causes greenhouse gas emissions such as nitrous oxide ($N_2O$) by processes of nitrification and denitrification. However, little studies have been conducted on determining effect of application ratio of composted animal manure on $N_2O$ emission rate and its annual emission pattern from upland soil in South Korea. Therefore, this study was conducted to determine $N_2O$ emission rate and its annual emission pattern from upland soil supporting for sweet potato. METHODS AND RESULTS: Composted animal manure was applied at the ratio of 0, 10, and 20 Mg/ha to an upland soil supporting for sweet potato (Ipomoea batatas). Nitrous oxide emission was examined during growing season and non-growing season from May 2016 through May 2017. Daily $N_2O$ fluxes showed peaks right after applications of composted animal manure and inorganic nitrogen fertilizer. Precipitation and soil water content affected daily $N_2O$ flux during non-growing season. Especially, $N_2O$ flux was strongly associated with water filled pore space (WFPS). We assumed that the majority of $N_2O$ measured during growing season of sweet potato was produced from nitrification and subsequent denitrification. Annual cumulative $N_2O$ emission rate significantly increased with increasing application ratio of composted animal manure. It increased to 12.0 kg/ha/yr from 8.73 kg/ha/yr at control with 10 Mg/ha of composted animal manure and to 14.0 kg/ha/yr of $N_2O$ emission with 20 Mg/ha of the manure. CONCLUSION: To reduce $N_2O$ emission from arable soil, further research on developing management strategy associated with use of the composted animal manure and soil moisture is needed.