• Title/Summary/Keyword: Nitrous oxide ($N_20$)

Search Result 35, Processing Time 0.029 seconds

The Effects of Zeolite on Ammonia, Nitrous Oxide Emission, and Forage Yield from Pig Slurry Applied to the Forage Corn Cropping

  • Choi, Ah-Reum;Park, Sang-Hyun;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.274-278
    • /
    • 2020
  • Pig slurry (PS) is the most applicable recycling option as an alternative organic fertilizer. The application of pig slurry has the risk of air pollution via atmospheric ammonia (NH3) and nitrous oxide (N2O) emission. The zeolite has a porous structure that can accommodate a wide variety of cations, thus utilizing for the potential additive of deodorization and gas adsorption. This study aimed to investigate the possible roles of zeolite in mitigating NH3 and N2O emission from the pig slurry applied to the maize cropping. The experiment was composed of three treatments: 1) non-N fertilized control, 2) pig slurry (PS) and 3) pig slurry mixed with natural zeolite (PZ). Both of NH3 and N2O emission from applied pig slurry highly increased by more than 3-fold compared to non-N fertilized control. The NH3 emission from the pig slurry was dominant during early 14 days after application and 20.1% of reduction by zeolite application was estimated in this period. Total NH3 emission through whole period of measurement was 0.31, 1.33, and 1.14 kg ha-1. Nitrous oxide emission in the plot applied with pig slurry was also reduced by zeolite treatment by 16.3%. Significant increases in forage and ear yield, as well as nutrient values were obtained by pig slurry application, while no significant effects of zeolite were observed. These results indicate that the application of zeolite and pig slurry efficiently reduces the emission of ammonia and nitrous oxide without negative effects on maize crop production.

Emission Control Technologies for N2O from Adipic Acid Production Plants (아디픽산 제조공정으로부터 발생되는 N2O에 대한 배출제어기술)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.755-765
    • /
    • 2011
  • Nitrous oxide ($N_2O$) is one of six greenhouse gases listed up in the Kyoto Protocol, and it effects a strong global warming because of its much greater global warming potential (GWP), by 310 times over a 100-year time horizon, than $CO_2$. Although such $N_2O$ emissions from both natural and anthropogenic sources occur, the latter can be controlled using suitable abatement technologies, depending on them, to reduce $N_2O$ below acceptable or feasible levels. This paper has extensively reviewed the anthropogenic $N_2O$ emission sources and their related compositions, and the state-of-the-art non-catalytic and catalytic technologies of the emissions controls available currently to representative, large $N_2O$ emission sources, such as adipic acid production plants. Challengeable approaches to this source are discussed to promote establishment of advanced $N_2O$ emission control technologies.

Production of Nitrous Oxide in Tatara Estuary Receiving Treated Wastewater (하수처리수의 방류를 받는 하천감조부에서의 N2O생성)

  • Lee, Seung-Yoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.631-641
    • /
    • 2009
  • Transport of nitrous oxide and treated waste water was investigated in an estuary receiving treated waste water. Seasonal change of water quality were also observed to assure origins of $N_2O$ and to estimate the influence of treated waste water on $N_2O$ production in the survey area. Based on nitrous oxide concentration profiles in the survey area, discharged treated waste water were traced, which flowed upstream at the flood tide and downstream at the ebb tide with concentration maxima. It is assumed that nitrous oxide discharged from treated waste water is transported to the survey area with partial and vertical mixture. To determine the production of $N_2O$ in survey area, flux at each sampling sites were calculated and 25% of the produced $N_2O$ was originated from treated waste water in result. The remaining percentage of the production was also assumed to be the discharge from the sediment layers.

Nitrous Oxide Enhances the Level of Sensory Block by Epidural Lidocaine (리도카인을 이용한 경막외 마취시 Nitrous Oxide가 감각차단에 미친 영향)

  • Goo, Young-Gwon;Woo, Soo-Young;Cho, Kang-Hee
    • The Korean Journal of Pain
    • /
    • v.12 no.1
    • /
    • pp.43-47
    • /
    • 1999
  • Backgroud: Systemic administration of opioid can prolong the duration of epidural anesthesia. The authors examined the effect of nitrous oxide ($N_2O$) on the level of sensory block induced by epidural lidocaine. Methods: Twenty minutes after epidural injection of 2% lidocaine (below 70 years : 20 ml, 70 years and above : 15 ml), the level of sensory block was assessed (2nd stage). Patients were randomly assigned to receive either medical air (control group, n=15) or 50% $N_2O$ in oxygen ($N_2O$ group, n=15) for 10 minutes, the level of block was reassessed (3rd stage). Pateints were given room air (control group) or 100% oxygen for 5 minutes and room air for 5 minutes ($N_2O$ group), and the level of block was reassessed (4th stage). Results: At the 3rd stage, $N_2O$ group showed 4.3 cm cephalad increase in the level of sensory block (p=0.005), but control group revealed 1.43 cm regression. After discontinuation of gas, the level of block regressed in both group (p=0.000). At the 4th stage, $N_2O$ group revealed 3.5 cm cephalad increase (p=0.048) and control group 1.97 cm regression (p=0.001) as compared with the 2nd stage. Conclusions: The level of sensory block induced by epidural lidocaine was significantly increased cephalad by concommitant use of 50% $N_2O$ for 10 minutes.

  • PDF

Comparison for Loss Rate of Low Concentration Nitrous Oxide in Tedlar Bag and Aluminium-Polyester Bag (테들러백과 알루미늄-폴리에스터백에 보관된 저농도 아산화질소의 유실율 비교)

  • Lee, Woo Chan;Park, Sung Bin;Ko, Young Hwan;Hyun, Seung Min;Yoon, Kyoon Duk
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The emission quantity of nitrous oxide is second largest among non-$CO_2$ greenhouse gas in Korea. In this study, we investigated loss rate of nitrous oxide which was filled in PVF and Al-PE bag as time goes on. Concentrations of tested samples were about 25 ppmv, 50 ppmv, 75 ppmv prepared by standard reference gas. In case of all experiments, loss rate of PVF bag was higher than Al-PE bag. After 18 days, loss rate of PVF bag was from 29.7% to 38.6% while Al-PE bag was from 21.7% to 23.7%. Especially the differential growed bigger when initial concentration of $N_2O$ in PVF bag was lower. And we also studied the effect of cock opening/closing procedures on loss rate. Prepared samples in experimental group were analyzed several times for 20 days and samples in control group were analysed only 1 time after 20 days. The experimental results showed that cock opening/closing procedures appeared to have little impact on loss rate.

Reduction of Nitrous Oxide Emission by EGR Method on Diesel Engine (디젤엔진에서 배기가스 재순환 방법을 이용한 아산화질소의 배출률 저감)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.16-21
    • /
    • 2015
  • Nitrous oxide($N_2O$) concentration in the atmosphere has been constantly increased by the human activities with industrial growth after the industrial revolution. One of factors to increase $N_2O$ concentration in the atmosphere is the $N_2O$ emission caused by the combustion of marine fuel. Especially, a sulfur component included in marine fuel oils is known as increasing the $N_2O$ formation in diesel combustion. Form this point of view, $N_2O$ emission from a ship is not negligible. On the other hand, Exhaust gas recirculation(EGR) that have thermal, chemical and dilution effect is effective method for reducing the NOx emission. In this study, an author investigated $N_2O$ reduction by using EGR on a direct injection diesel engine. The test engine was a 4-stroke diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of the engine was a fixed load of 75%. The experimental oil was a blend-fuel that were adjusted with sulfur ratio of 3.5%, and EGR ratio of 0%, 10%, 20% and 30%. In conclusion, diesel fuel that contained 3.5% sulfur component increased $SO_2$ emission in exhaust gas, and increment of EGR ratio reduced NO emission. Moreover, $N_2O$ emission was decreased as over 50% at EGR ratio of 10% and reduced 100% at EGR ratio of 30% compared with $N_2O$ emission of 0% EGR ratio.

Effect of no-tillage and green manure practices on the nitrous oxide emission from cropland (농경지에서 무경운 및 녹비 투입에 따른 아산화질소 배출특성)

  • Lee, Sun-Il;Kim, Gun-Yeob;Lee, Jong-Sik;Choi, Eun-Jung
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.309-316
    • /
    • 2019
  • Cropland is a major source of atmospheric nitrous oxide (N2O) and we need technologies in the field of agriculture that can reduce the presence of N2O. In this study, a field experiment encompassing six treatments was conducted to determine the efflux of N2O in cropland during the growing season. An experimental plot was composed of two main sectors, no-tillage (NT) and conventional tillage (CT), which were subdivided into three plots according to types of nitrogen (N) sources: CF, chemical fertilizer; HV, hairy vetch+chemical fertilizer; and RY, rye+chemical fertilizer. The cumulative N2O emissions were 179.8 mg N2O m-2 for CF-CT, 108.1 mg N2O m-2 for HV-CT, 303.5 mg N2O m-2 for RY-CT, 86.7 mg N2O m-2 for CF-NT, 73.8 mg N2O m-2 for HV-NT, and 122.7 mg N2O m-2 for RY-NT during the fallow season. The CT, HV, and RY of no-tilled soils were reduced by 51.8, 31.7 and 59.6%, respectively (p<0.001). Our results indicate that the use of no-tillage and hairy vetch practice rather than conventional tillage and chemical fertilizer practice can decrease N2O emission.

The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters (Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성)

  • Kim Deug-Soo;Oh Jin Man
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

Nitrous oxide and carbon dioxide efflux of cropland soil during fallow season (휴경기간 녹비재배 농경지 토양에서 아산화질소 및 이산화탄소 배출특성)

  • Lee, Sun-Il;Kim, Gun-Yeob;Choi, Eun-Jung;Lee, Jong-Sik;Jeong, Hyun-Cheol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.386-396
    • /
    • 2018
  • Cropland is sources of atmospheric nitrous oxide ($N_2O$) and carbon dioxide ($CO_2$). However, the contribution of the fallow season to emission of these gases has rarely been determined. In this study, a field experiment encompassing three treatments was conducted to determine efflux of $N_2O$ and $CO_2$ in cropland during fallow season. The treatments were hairy vetch (H.V.), rye and control (Con.). The H.V. and rye were sown in middle October and early November, respectively. The soil $N_2O$ efflux among all three treatments in the fallow season (November-April) were $0.014-2.956mg\;N_2O\;m^{-2}{\cdot}d^{-1}$. The cumulative $N_2O$ emissions were $104.4mg\;N_2O\;m^{-2}$ for Con., $85.8mg\;N_2O\;m^{-2}$ for H.V. and $85.0mg\;N_2O\;m^{-2}$ for Rye during the fallow season. The highest $N_2O$ emissions occurred in Con., while H.V. and Rye emissions were similar. Cumulative $CO_2$ emissions were $293.1g\;CO_2\;m^{-2}$ for Con., $242.2g\;CO_2\;m^{-2}$ for H.V., $275.2g\;CO_2\;m^{-2}$ for Rye during fallow season. This study showed that soil $N_2O$ and $CO_2$ average daily emission during fallow season were 28.3% and 27.4%, respectively of the growing season. Our results indicate that $CO_2$ and $N_2O$ emissions from agricultural systems continue throughout the fallow season.

Effect of Application Rate of Composted Animal Manure on Nitrous Oxide Emission from Upland Soil Supporting for Sweet potato (고구마 재배 밭토양에서 가축분퇴비의 시용량이 아산화질소 발생에 미치는 영향)

  • Kim, Sung Un;Ruangcharus, Chuanpit;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.172-178
    • /
    • 2018
  • BACKGROUND: Composted animal manure applied to the arable soil for improving soil quality and enhancing crop productivity causes greenhouse gas emissions such as nitrous oxide ($N_2O$) by processes of nitrification and denitrification. However, little studies have been conducted on determining effect of application ratio of composted animal manure on $N_2O$ emission rate and its annual emission pattern from upland soil in South Korea. Therefore, this study was conducted to determine $N_2O$ emission rate and its annual emission pattern from upland soil supporting for sweet potato. METHODS AND RESULTS: Composted animal manure was applied at the ratio of 0, 10, and 20 Mg/ha to an upland soil supporting for sweet potato (Ipomoea batatas). Nitrous oxide emission was examined during growing season and non-growing season from May 2016 through May 2017. Daily $N_2O$ fluxes showed peaks right after applications of composted animal manure and inorganic nitrogen fertilizer. Precipitation and soil water content affected daily $N_2O$ flux during non-growing season. Especially, $N_2O$ flux was strongly associated with water filled pore space (WFPS). We assumed that the majority of $N_2O$ measured during growing season of sweet potato was produced from nitrification and subsequent denitrification. Annual cumulative $N_2O$ emission rate significantly increased with increasing application ratio of composted animal manure. It increased to 12.0 kg/ha/yr from 8.73 kg/ha/yr at control with 10 Mg/ha of composted animal manure and to 14.0 kg/ha/yr of $N_2O$ emission with 20 Mg/ha of the manure. CONCLUSION: To reduce $N_2O$ emission from arable soil, further research on developing management strategy associated with use of the composted animal manure and soil moisture is needed.