• Title/Summary/Keyword: Nitroprusside

Search Result 216, Processing Time 0.029 seconds

Cystinuria in Siblings (남매에서 발생한 Cystinuria)

  • Lee, Dong Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.1 no.1
    • /
    • pp.18-22
    • /
    • 2001
  • Renal colic, hematuria, dysuria and stone passage were developed in younger brother (4 year 6 month old boy). But the elder sister (6 year old girl)had no specific symptoms and signs. The identification of the disease was proved by cyanide nitroprusside test and amino acid analysis of urine. In our patients the chromatographic amino acid patterns of urine showed remarkably increased excretion of cystine, ornithine, lysine, and arginine. They are managed by adequate hydration with Shohl solution for rendering the urine more alkaline, and alpha-mercaptopropionylglycine (Thiola).

  • PDF

Effects of Various Stimuli on Corticotropin-Releasing Factor in the Human Neuroblastoma Clones (BE(2)-M17 및 BE(2)-C 신경모세포종에서 Corticotropin-Releasing Factor에 대한 신호전달자극들의 효과)

  • Han, Jin-Hee;Kasckow, John W.;Lee, Sung-Pil;Parkes, David G.;Owens, Michael J.;Stipetic, Mark D.;Risby, Emile;Nemeroff, Charles B.
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.2
    • /
    • pp.252-256
    • /
    • 1995
  • Corticotropin-releasing factor(CRF)를 분비하는 배양세포주는 CRF의 세포내 조절을 연구하는데 있어 훌륭한 체계가 된다. BE(2)-M17 및 BE(2)-C 세포주는 CRF를 생산하고 분비하며 forskolin 처치에 반응하는 것으로 알려져 있다. 저자들은 이들 세포주에 phorbol 에스테르, 즉 phorbol 12-myristate 13-acetate(TPA) 0.8, 4, 10, 20 nM, 및 nitric oxide(NO)의 신호전달 경로의 자극제(1-${\mu}M$ nitroprusside)와 차단제($1{\mu}M$ nitroprusside+$300{\mu}M$ $N^G$-methyl-D-arginine), 그리고 interleukin-$1{\alpha}$ (IL $1{\alpha}$ ; 4, 20, 100, 500 pM)를 처치하여 CRF를 의미있게 증가시켰으나 세포외 분비는 C 세포에서만 변화되었다. NOS계의 자극제와 차단제는 C 세포의 forskolin 효과를 의미있게 변화시켰다. IL$1{\alpha}$는 두 세포주에 대한 영향이 없었다. 상기 제제들에 대한 이들 세포의 반응이 중추신경계 CRF 신경들과 관련하여 논의되었다.

  • PDF

Modulation of Outward Potassium Currents by Nitric Oxide in Longitudinal Smooth Muscle Cells of Guinea-pig Ileum

  • Kwon, Seong-Chun;Rim, Se-Joong;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • To investigate the possible involvement of outward potassium ($K^+$) currents in nitric oxide-induced relaxation in intestinal smooth muscle, we used whole-cell patch clamp technique in freshly dispersed guinea-pig ileum longitudinal smooth muscle cells. When cells were held at -60 mV and depolarized from -40 mV to -50 mV in 10 mV increments, sustained outward $K^+$ currents were evoked. The outward $K^+$ currents were markedly increased by the addition of 10 ${\mu}M$ sodium nitroprusside (SNP). 10 ${\mu}M$ S-nitroso-N-acetylpenicillamine (SNAP) and 1 mM 8-Bromo-cyclic GMP (8-Br-cGMP) also showed a similar effect to that of SNP. 1 mM tetraethylammonium (TEA) significantly reduced depolarization-activated outward $K^+$ currents. SNP-enhanced outward $K^+$ currents were blocked by the application of TEA. High EGTA containing pipette solution (10 mM) reduced the control currents and also inhibited the SNP-enhanced outward $K^+$ currents. 5 mM 4-aminopyridine (4-AP) significantly reduced the control currents but showed no effect on SNP-enhanced outward $K^+$ currents. 0.3 ${\mu}M$ apamin and 10 ${\mu}M$ glibenclamide showed no effect on SNP-enhanced outward $K^+$ currents. 10 ${\mu}M$ 1H-[1,2,4]oxadiazolo [4,3-a]quinoxaline-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, significantly blocked SNP-enhanced $K^+$ currents. We conclude that NO donors activate the $Ca^{2+}-activated$ $K^+$ channels in guinea-pig ileal smooth muscle via activation of guanylate cyclase.

  • PDF

Effects of Calcium on Nitric oxide (NO)-induced Adventitious Rooting Process in Radish (Raphanus sativus L.) Cotyledons (무 (Raphanus sativus L.) 자엽에서 산화질소 (Nitric oxide)에 의해 유도된 부정근 형성과정에 대한 칼슘의 효과)

  • Jin, Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • The treatment of radish cotyledons with a nitric oxide (NO)-releasing substance, sodium nitroprusside (SNP) resulted in an increased adventitious root development in a dose-dependent manner. However, this NO-mediated enhancement effect was reversed when either 0.5 mM EGTA (an extracellular $Ca^{2+}$ chelator) or 0.1 mM $LaCl_3$ (a calcium channel blocker) was applied with $50\;{\mu}M$ SNP. Our results also showed that guaiacol peroxidase (GPX) and syringaldazine peroxidase (SPX) activities, which are known to play a key role in rooting, were more largely increased during adventitious root induction in the cotyledons treated with SNP. However, the treatment of cotyledons with SNP plus $LaCl_3$ inhibited the SNP-induced increases in the activities of both GPX and SPX. Trifluoperazine (TFP), an antagonist of calmodulin (a specific calcium-binding protein), also delayed adventitious root formation and significantly reduced the root length and number of the SNP-treated cotyledons as well as the deactivation of GPX and SPX enzymes. In conclusion, our results suggest that calcium is involved in the NO response leading to induction of adventitious root through a regulation of GPX and SPX.

Anti-oxidative Effect of Some Plant Extracts Against Nitric Oxide-induced Oxidative Stress on Neuronal Cell (Nitric oxide에 의해 산화적 스트레스를 받은 Neuronal cell에 항산화 효과를 가지는 수종 생약추출물의 검색)

  • Koo, Uk;Lee, Hak-Ju;Lee, Dong-Ho;Lee, Hyun-Jung;Ham, Ah-Rom;Cho, Eun-Young;Mar, Woong-Chon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.290-294
    • /
    • 2008
  • The objective of this study is screening the anti-oxidative effects of several plant MeOH extracts against oxidative stress in Neuroblastoma cell. Oxidative stress has been implicated in the pathogenesis of many neurotoxicity, neurodegenerative disorders and cell death. This oxidative stress is generated by ROS (Reactive Oxygen Species) such as nitric oxide, nitrogen dioxide, peroxyl, superoxide ($O_2^-$), hydroxyl, alkoxyl. So, in the present study, we induced oxidative stress by treatment of sodium nitroprusside (2.5 mM) in human neuroblastoma SH-SY5Y cell which was treated samples before 24hr, and cell viability was measured by MTT reduction assay. Of those tested, the extracts of Paeonia japonica (roots), Eucommia ulmoides (炒)(barks), Paeonia japonica (曝乾)(roots), Phyllostachys bambusoides (stems), Polygala tenuifolia (去心, 炒)(roots), Paeonia japonica (roots), Polygala tenuifolia (roots), Machilus thunbergii (barks), Mallotus japonicus (leaves), Poria cocos (whole), Sophora flavescens (roots), Angelica tenuissima (roots), Angelica gigas (當歸尾)(roots) showed anti-oxidative effects[$EC_{50}$<15.20 ${\mu}g$/ml(Carnosine:Positive control)]in dose dependent manner.

Role of Nitric Oxide on the Neuropathic Pain in Streptozotocin-induced Diabetic Rats (Streptozotocin에 의해 유도된 당뇨병성 통증시 Nitric Oxide의 역할)

  • Choi, Jin-Jung;Joen, Byeong-Hwa;Yoon, Seok-Hwa;Lee, Young-Ho;Kim, Moo-Gang;Kim, Kwang-Jin
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • Background: It is controversial whether the change in nitric oxide (NO) expression in the dorsal root ganglia (DRG) may be responsible for developtment and/or maintenance of painful diabetic neuropathy. The aim of this study was to clarify the role of NO in the pathogenesis of painful diabetic neuropathy. Methods: The effect of L-nitroargine methylester (L-NAME) or sodium nitroprusside (SNP) on allodynia was measured in streptozotocin (STZ)-induced diabetic rats. NO concentration was measured in the cerebrospinal fluid (CSF) and plasma of the diabetic rats. NADPH-diaphorase (NADPH-d) histochemistry was performed on the DRG and spinal cords of the STZ-induced diabetic rats. Results: L-NAME, an inhibitor of nitric oxide synthase, alleviated allodynia, while SNP, a nitric oxide donor, aggravated allodynia in diabetic rats. Plasma NO level in the diabetic rats was significantly decreased compared with control rats. NO level in the CSF of diabetic rats did not differ from that of the control rats. NADPH-d positive cells were decreased in the DRG of diabetic rats. However, NADPH-d histochemistry in the diabetic spinal cord was not different from that of the control rats. Conclusions: Downregulation of NO expression in the diabetic rats may not be causally related to the development and/or maintenance of painful diabetic neuropathy.

  • PDF

Comparision of Regulatory Action of cAMP and cGMP on the Activation of Neutrophil Responses

  • Han, Chang-Hwang;Yoon, Young-Chul;Shin, Yong-Kyoo;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • The regulatory role of cyclic nucleotides in the expression of neutrophil responses has been examined. fMLP-stimulated superoxide production in neutrophils was inhibited by dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP), histamine, adenosine + theophylline, cAMP elevating agents, and 8-bromoguanosine 3' ,5' -cyclic monophosphate (8-BrcGMP) and sodium nitroprusside, cGMP elevating agents. Staurosporine, a protein kinase C inhibitor, genistein, a protein tyrosine kinase inhibitor and chlorpromazine, a calmodulin inhibitor, inhibited superoxide production by fMLP, but they did not further affect the action of DBcAMP on the stimulatory action of fMLP. DBcAMP, histamine, adenosine+theophylline and genistein inhibited myeloperoxidease release evoked by fMLP, whereas BrcGMP, sodium nitroprusside and staurosporine did not affect it. The elevation of $[Ca^{2+}]_i$ evoked by fMLP was inhibited by genistein and chlorpromazine but was not affected by staurosporine. DBcAMP exerted little effect on the initial peak in $[Ca^{2+}]_i$ response to fMLP but effectively inhibited the sustained rise. On the other hand, BrcGMP significantly inhibited both phases. fMLP-induced $Mn^{2+}$ influx was inhibited by either DBcAMP or BrcGMP. These results suggest that fMLP-stimulated neutrophil responses may be regulated by cAMP more than cGMP. cAMP and cGMP appear not affect stimulated responses by direct protein kinase C activation. Their regulatory action on the stimulated neutrophil responses may be not influenced by other activation processes.

  • PDF

Ferritin Overload Suppresses Male Fertility Via altered Acrosome Reaction

  • Kwon, Woo-Sung;Rahman, Md Saidur;Kim, Ye-Ji;Ryu, Do-Yeol;Kahtun, Amena;Pang, Myung-Geol
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.117-125
    • /
    • 2015
  • Iron is required for cell viability but is toxic in excess. While the iron-mediated malfunction of testicular cells is well appreciated, the underlying mechanism(s) of this effect and its relationship with fertility are poorly understood. Ferritin is a ubiquitous intracellular protein that controls iron storage, ferroxidase activity, immune response, and stress response in cells. Ferritin light chain protein (FTL) is the light subunit of the Ferritin. Previously, we had identified the FTL in bovine spermatozoa following capacitation. In present study, to investigate the role of Ferritin in sperm function, mice spermatozoa were incubated with multiple doses (1, 10 and $100{\mu}M$) of sodium nitroprusside (SNP), an iron donor. SNP was increased Ferritin levels in a dose-dependent manner. The Ferritin was detected on the acrosome in spermatozoa by immunocytochemistry. Short-term exposure of spermatozoa to SNP increased tyrosine phosphorylation and the acrosome reaction (AR). Finally, SNP affected a significant decrease in the rate of fertilization as well as blastocyst formation during early embryonic development. On the basis of these results, we propose that the effects of Ferritin on the AR may reduce overall sperm function leads to poor fertility in males and compromised embryonic development.

Effects of Trachelospermum caulis Extract on Sodium Nitroprusside (SNP)-induced Inflammatory Responses in Rabbit HIG-82 Synovial Membrane Cells (낙석등 추출물이 토끼 HIG-82 활액막 세포주에서 Sodium Nitroprusside (SNP)로 유도된 염증반응에 미치는 영향)

  • Park, Jung-Sik;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.2
    • /
    • pp.31-40
    • /
    • 2014
  • Objectives Trachelospermi caulis, known as Nak-Suk-Deung in Korea, is the dried leafy stem of Trachelospermum asiaticum var. intermedium Nakai, and climbing stems and branches of Trachelospermum sdisyivum var, intermedium nakai or Apocyanaceae. Trachelospermi caulis has antipyretic and analgesic activity. It has traditionally been used as a folk remedy in Korea for the treatment of various infla mMatory diseases, including rheumatoid arthritis. The purpose of this study was to evaluate the Effects of Trachelospermum caulis extract on SNP-induced infla mMatory responses in rabbit HIG-82 synovial membrane cells. Methods Anti-infla mMatory effects of the extract of Trachelospermum caulis were investigated using rabbit HIG-82 synovial membrane cells. For this study, 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blot analysis, PGE2 i mMunoassay, and NO detection were conducted. Results The aqueous extract of Trachelospermum caulis exerted cytotoxicity and suppressed PGE2 synthesis and NO production in rabbit HIG-82 synovial membrane cells. The aqueous extract of Trachelospermum caulis also inhibited the SNP-induced expressions of COX-2, iNOS, and TNF-$\alpha$ in rabbit HIG-82 synovial membrane cells. Conclusions These results showed that the extract of Trachelospermum caulis exerts the anti-infla mMatory effect by suppressing COX-2, iNOS, and TNF-$\alpha$ expressions in the synovial membrane cells.

The Role of Gap Junction in the Goldfish's Motion Detection Measured with Optometer Response (금붕어의 동작 감지에 미치는 갭 정션의 역할: 시각운동 반응 측정)

  • Lee, Young-Sub;Yoon, Young-Hyun;Jung, Chang-Sub
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • Gap junctions are distributed within various cells and function as electrical synapses by freely exchanging small molecules. In the retina, the practical role of gap junctions in an animal's motion detection has not been investigated very much. In this study, optometer response (OMR) was used to Investigate the effects of drugs which modulate electrical synapses between retinal ceils. An Injection of carbenoxolone, 8-Br-cAMP, sodium nitroprusside (SNP) or 8-Br-cGMP decreased goldfish's OMR in both light and dark conditions. In light conditions, an intravitreal injection of dopamine, SKF-38393 or eticlopride decreased OMR and that of SCH-23390 increased it. In dark conditions, the injections produced opposite results: dopamine, SKF-38393 and eticlopride increased OMR and SCH-23390 caused OMR to decrease. These results indicate that gap junctions between retinal cells have an Important role in goldfish's motion detection.

  • PDF