DOI QR코드

DOI QR Code

Effects of Calcium on Nitric oxide (NO)-induced Adventitious Rooting Process in Radish (Raphanus sativus L.) Cotyledons

무 (Raphanus sativus L.) 자엽에서 산화질소 (Nitric oxide)에 의해 유도된 부정근 형성과정에 대한 칼슘의 효과

  • 진창덕 (강원대학교 자연과학대학 생명과학부)
  • Published : 2007.09.29

Abstract

The treatment of radish cotyledons with a nitric oxide (NO)-releasing substance, sodium nitroprusside (SNP) resulted in an increased adventitious root development in a dose-dependent manner. However, this NO-mediated enhancement effect was reversed when either 0.5 mM EGTA (an extracellular $Ca^{2+}$ chelator) or 0.1 mM $LaCl_3$ (a calcium channel blocker) was applied with $50\;{\mu}M$ SNP. Our results also showed that guaiacol peroxidase (GPX) and syringaldazine peroxidase (SPX) activities, which are known to play a key role in rooting, were more largely increased during adventitious root induction in the cotyledons treated with SNP. However, the treatment of cotyledons with SNP plus $LaCl_3$ inhibited the SNP-induced increases in the activities of both GPX and SPX. Trifluoperazine (TFP), an antagonist of calmodulin (a specific calcium-binding protein), also delayed adventitious root formation and significantly reduced the root length and number of the SNP-treated cotyledons as well as the deactivation of GPX and SPX enzymes. In conclusion, our results suggest that calcium is involved in the NO response leading to induction of adventitious root through a regulation of GPX and SPX.

분리된 무 자엽 조직에 산화질소 (nitric oxide: NO) 공여체인 sodium nitroprusside (SNP) 처리 시 농도 의존방식으로 부정근의 발달을 증진시켰다. 그러나 이러한 NO 증진 효과는 세포외 칼슘 chelator인 0.5 mM EGTA 또는 세포막 칼슘채널 차단제인 0.1 mM $LaCl_3$를 각각 $50\;{\mu}M$ SNP와 함께 혼합처리 시 반전되었다. 또한, 뿌리 발생에서 중심적 역할을 수행하는 것으로 알려진 guaiacol peroxidase (GPX)와 syringaldazine peroxidase (SPX)의 활성도가 SNP 단독 처리된 자엽에서 부정근이 형성되는 동안 현저히 증가하였다. 그러나, SNP와 $LaCl_3$ 혼합처리 시 SNP에 의해 유도된 GPX와 SPX 활성도 증가가 거의 증류수 대조구 수준으로 억제되었다. calmodulin의 anatagonist인 trifuoperazine 역시 SNP로 처리된 자엽에서 부정근 형성을 억제하여 발생된 뿌리의 개수와 길이를 감소시켰으며 동시에 GPX와 SPX를 불활성화 하였다. 결론적으로, 이들 결과는 칼슘이 GPX와 SPX 활성도 조절을 통해 부정근 유도를 이끄는 NO 반응에 포함되어 있음을 나타내는 것이다.

Keywords

References

  1. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 315: 37-40 https://doi.org/10.1038/315037a0
  2. Beligni MV, Lamattina L (2001) Nitric oxide in plant: the history is just beginning. Plant Cell and Environ 24: 267-278 https://doi.org/10.1046/j.1365-3040.2001.00672.x
  3. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aLettrone layers. Plant Physiol 129: 1642-1650 https://doi.org/10.1104/pp.002337
  4. Brummell DA, Maclachlan GA (1989) Calcium antagonist TMB-8 inhibits cell wall formation and growth in pea. J Exp Bot 40: 559-565 https://doi.org/10.1093/jxb/40.5.559
  5. Carpin S, Crevecoeur M, Meyer MD, Simon P, Greppin H, Penel C (2001) Identification of a $Ca^{2+}$-pectate binding site on an apoplastic peroxidase. The Plant Cell 13: 511-520 https://doi.org/10.2307/3871403
  6. Christensen JH, Bauw G, Welinder KG, Montagu MV, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118: 125-135 https://doi.org/10.1104/pp.118.1.125
  7. Cragan JD (1999) Teratogen update: methylene blue. Teratology 60: 42-48 https://doi.org/10.1002/(SICI)1096-9926(199907)60:1<42::AID-TERA12>3.0.CO;2-Z
  8. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221: 297-303 https://doi.org/10.1007/s00425-005-1523-7
  9. Cupers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: A comparison. J Plant Physiol 159: 869-876 https://doi.org/10.1078/0176-1617-00676
  10. Gaspar T, Penel C, Castillo FJ, Greppin H (1985) A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol Plant 64: 418-423 https://doi.org/10.1111/j.1399-3054.1985.tb03362.x
  11. Gouvea CMCP, Souza, JF, Magalhaes ACN, Martins IS (1997) NO- releasing substances that induce growth elongation in maize root segment. Plant Growth Regul 21: 183-187 https://doi.org/10.1023/A:1005837012203
  12. Haissig BE, Davis TO, Riemenschneider DE (1992) Researching the controls of adventitious rooting. Physiol Plant 84: 310-317 https://doi.org/10.1111/j.1399-3054.1992.tb04669.x
  13. Hausman JF (1993) Changes in peroxidase activity, auxin level and ethylene production during root formation by poplar shoots raised in vitro. Plant Growth Regul 13: 263-268 https://doi.org/10.1007/BF00024847
  14. Ignarro LJ (1990) Biosynthesis and metabolism of endothelium derived nitric oxide. Annu Rev of Pharm and Toxic 30: 535-560 https://doi.org/10.1146/annurev.pa.30.040190.002535
  15. Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Gracia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor. Plant Physiol 135: 516-529 https://doi.org/10.1104/pp.104.038968
  16. Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129: 954-956 https://doi.org/10.1104/pp.004036
  17. Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the 1M-induced adventitious rooting process. Plant Physiol 132: 1241-1248 https://doi.org/10.1104/pp.103.022228
  18. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135: 279-286 https://doi.org/10.1104/pp.103.038554
  19. Perdue DO, La Favre AK, Leopold AC (1988) Calcium in the regulation of gravitropism by light. Plant Physiol 86: 1276-1280
  20. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies L.) Plant Physiol 106: 53-60 https://doi.org/10.1104/pp.106.1.53
  21. Poovaiah BW (1987) The role of calcium and calmodulin in senescence. In: Thompson WW, Nothnagel EA, Huffaker, (eds), Plant senescence. : Its Biochemistry and Physiology, ASPP, Rockville, pp 182-189
  22. Quiroga M, Guerrero C, Botella MA, Barcelo, A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier HA, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122: 1119-1128 https://doi.org/10.1104/pp.122.4.1119
  23. Rout GR, Samantaray S, Das P (2000) In vitro rooting of Psoralea corylifolia Linn: Peroxidase activity as a marker. Plant Growth Regul 30: 215-219 https://doi.org/10.1023/A:1006336819887
  24. Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187: 455-459
  25. Syros T, Yupsanis T, Zafiriadis H, Economou A (2004) Activity and isoforms of peroxidase, lignin and anatomy during adventitious rooting in cuttings of Ebenus cretica L. J Plant Physiol 161: 69-77 https://doi.org/10.1078/0176-1617-00938
  26. Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence. Plant Biol 7: 449-455 https://doi.org/10.1055/s-2005-865878
  27. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49: 585-609 https://doi.org/10.1146/annurev.arplant.49.1.585
  28. Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99: 4097-4102
  29. Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata. Plant Physiol 113: 1223-1231 https://doi.org/10.1104/pp.113.4.1223