• Title/Summary/Keyword: Nitrogen utilization rate

Search Result 149, Processing Time 0.025 seconds

Relationship between Glutamine Synthetase Activity and Nitrogen Content and Grain Yield in Wheat (밀의 Glutamine Synthetase 활성도와 질소함량 및 수량과의 관계)

  • 손상목;체맥 에버하르트
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.545-553
    • /
    • 1991
  • To find out the basic data for the possibility of agricultural utilization for GSA (Glutamine Synthetase Activity), the effect of nitrogen on the GSA in wheat leaf discs, the variation of GSA after light treatment and the comparative activity of GS during preservation were studied. The result of this study suggested that GSA could play an important and direct regulatory role in the nitrogen assimilation by wheat. During the growth stage of wheat its integral activity was found to closely match the organic nitrogen content. GS may therefore be the rate limiting enzyme in inorganic N assimilation. Moreover, integral GSA was closely correlated with grain yield and grain nitrogen. GSA could be suitable to utilize as a parameter for super type selection and an indicator for optimum nitrogen fertilization. Throughout the experiment, the contents of NO; were increased by N fertilization so that the NO; content was not attributable to change in the level of GSA. At investigation during dark-light transition of culture, no change in the level of GSA was observed until after 8-14 hours in the light treatment. And the level of GSA in wheat leaf discs during preservation at refrigerated storage $(-20^{\circ}C)$ was stable until 12 weeks, when its leaf discs were sampled with liquid nitrogen.

  • PDF

Effect of Replacing Til Oil Cake by Poultry Excreta on Growth and Nutrient Utilization in Growing Bull Calves

  • Khan, M.J.;Shahjalal, M.;Rashid, M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.385-390
    • /
    • 1998
  • An experiment was conducted for 90 days using 9 growing bull calves (initial LW 71.5 kg) to investigate the effect of replacing til oil cake by poultry excreta on growth performance and nutrient utilization. The animals were randomly divided into three groups. The control group A was fed with conventional concentrate mixture containing til oil cake, rice bran, wheat bran, bone meal and common salt and the groups B and C were offered diets in which 50 and 100 percent of til oil cake of diet A were replaced by dried poultry excreta. All the animals were fed urea soaked rice straw ad libitum and concentrate mixture was given at the rate of 10 g per kg LW. Towards the end of growth trial a conventional digestibility trial was conducted. Average daily live weight gain was 216, 211 and 188 g for animals fed diets A, B and C, respectively. Average daily dry matter intake in groups A, B and C was 3.42, 3.37 and 3.30 kg per 100 kg LW, respectively. The daily live weight gain and dry matter intake did not differ significantly (p > 0.05) among the dietary groups. The digestibility coefficient for DM or NFE was almost similar but that for OM, CP, CF and EE was significantly different (p < 0.01) among the dietary groups. TDN percent in diets A, B and C was 57.3 53.3 and 50.8, respectively and the difference was significant (p < 0.01). Animals in all the groups were in a state of positive nitrogen balance. The results indicated that til oil cake can be replaced by dried poultry excreta in bull calf ration.

Effects of Dietary Protein and Threonine Supply on In vitro Liver Threonine Dehydrogenase Activity and Threonine Efficiency in Rat and Chicken

  • Lee, C.W.;Oh, Y.J.;Son, Y.S.;An, W.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1417-1424
    • /
    • 2011
  • This study was conducted to assess the relation between threonine (Thr) oxidation rate and threonine efficiency on rat and chicken fed with graded levels of protein and threonine. The increase in threonine content from 0.28 to 0.72% in a diet containing 12.0% crude protein (CP) caused a gradual increase in threonine dehydrogenase (TDG) activity in rat liver. Similar, but more pronounced results were observed after 18.0% CP in the diet. Both protein levels in combination with the highest level of threonine supplementation increased liver TDG activity significantly, indicating enhanced threonine catabolism. Parameters of efficiency of threonine utilization calculated from parallel nitrogen balance studies decreased significantly and indicated threonine oversupply after a maximum of threonine supplementation. At the lower levels of threonine addition the efficiency of threonine utilization was not significantly changed. In the chicken liver up to 0.60% true digestible threonine (dThr) in the 18.5% CP diet produced no effect on the TDG activity. However, TDG activity in the liver was elevated by the diet containing 22.5% CP (0.60% dThr) and the efficiency of threonine utilization decreased, indicating the end of threonine limiting range. In conclusion, the in vitro TDG activity in the liver of rat and growing chicken has an indicator function for the dietary supply of threonine.

Design of Optimal Water Treatment Processes based on Required Water Quality for Utilization of the Saemanguem Lake Water (새만금 담수 활용을 위한 요구수질별 최적의 수처리 방안 연구)

  • Choi, Kyung-Sook;Lee, Kwang-Ya
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • This study was aimed at providing optimal water treatment processes based on various required water quality for utilization of the Saemangeum lake water as water supply alternatives to this area. Various water treatment methods were considered for investigation there characteristics, pollution removal rate, pros and cons in order to select appropriate water treatment processes satisfying the required water quality for different purposes. As results, the FDA system for SS, turbidity, BOD removals, UV treatment for coliform, BOD removals, FNR process for T-N, T-P removals, and ECRS process for desalination purpose were found to be better methods in senses of removal efficiency, operation and maintenance. Case studies were provided with cost analysis for field applications in the Saemangeum area.

Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy (LNG냉열이용 수소액화 공정해석 및 설계)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • For the hydrogen liquefaction, the large amount of energy is consumed, because precooling, liquefaction and ortho/para conversion heats should be eliminated. In this paper the basic design and thermal analysis are carried out to reduce the energy consumption by using LNG cold energy for precooling process in hydrogen liquefaction processes. The LNG cold energy utilization for hydrogen precooling enables not only to get energy saving for liquefaction, but to recover the wasted cold energy to sea water at the LNG terminal. The results show that the energy saving rate for liquefaction using LNG cold energy is almost 75% of current industrial hydrogen liquefaction plant. The demand flow-rate of LNG is only 15T/D for 1T/D hydrogen liquefaction.

Effect of Milk Vetch Utilization Rice Cultivation to Reduce Application Amount of Nitrogen at Plowing Time in Paddy Field (자운영 후작(後作) 벼 재배시(栽培時) 경운시기별(耕耘時期別) 질소시비량(窒素施肥量) 절감효과(節減效果))

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Kang, Seung-Won;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.352-360
    • /
    • 2002
  • This study was carried out to find out the effect of Milk vetch(Astragalus sinicus L.) on growth, and yield of rice, physicochemical properties of soil, reduction rate of nitrogen fertilization, and soil improvement under the different plowing time with Milk vetch cultivated in paddy field, plowing at maximum blooming, last blooming, fruiting stages. The fresh weight of Milk vetch at each plowing time of maximum blooming, last blooming and fruiting stage was 22,500, 20,000, $12,500kg\;ha^{-1}$ respectively. Content of total nitrogen at three plowing times was 2.95, 2.66, and 2.47% and the C/N ratio were 15.7, 18.0, and 19.2, respectively. Physico-chemical properties of soil were improved in cultivated milk vetch, the content of T-N. OM and porosity ratio were increased while the content of $P_2O_5$ and bulk density, solidphase ratio were decreased compared to noncultivated milk vetch. Content of $NH_4-N$ in soil was highest plowing at maximum blooming stage and appeared an increasing tendency according to increased nitrogen level. Amount of nitrogen fertilizer by rice was highest plowing at maximum blooming stage and appeared an increasing tendency according to increased nitrogen level. Nitrogen-use efficiency was high in $33kg\;ha^{-1}$ nitrogen level at three plowing times. The number of spikelets per $m^2$ was high in plowing at maximum blooming stage, last blooming stage and the percentage of ripeness was high in fruiting stage of milk vetch. So the rice yield was increased 9%, 8% in $55kg\;ha^{-1}$ nitrogen level plowing at maximum blooming stage, last blooming stage and 1% in $77kg\;ha^{-1}$ nitrogen level plowing at fruiting stage compared to conventional cultivation.

Characteristics of Marine Environment and Primary Productivity of Phytoplankton in the Seaweed Bed of Northwestern Coast of Jeju Island During Autumn 2014 (2014년 추계 제주 북서부 해조장에서 해양환경과 식물플랑크톤의 일차생산력 특성)

  • KWON, HYEONG KYU;YANG, HAN SOEB;YOON, YANG HO;CHOI, OK IN;CHOI, IM HO;OH, SEOK JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.180-191
    • /
    • 2015
  • Marine environmental characteristics and primary productivity of phytoplankton were investigated in seaweed bed of northwestern coast of Jeju Island during Autumn, 2014. The trophic state based on dissolved inorganic nitrogen and phosphorus was mesotrophic. The Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplankton. Dissolved organic nitrogen and phosphorus accounts for 63 and 46% of the dissolved total nitrogen and phosphorus, respectively. Light utilization efficiency (${\alpha}$) and maximum photosynthetic capacity ($P_m{^B}$) were highest in the Donggwi (third-year marine forest), followed by Gonae (one-year marine forest), Biyangdo (natural seaweed bed) and Geumneung (whitening area). The primary productivity of phytoplankton in the Donggwi, Gonae and Biyangdo also was higher than that in the Geumneung. Although nitrogen is the limiting factor, enriched dissolved organic nitrogen might play an important role to maintain primary productivity. In addition, phytoplankton community through photosynthesis could produce about 14% of phytoplankton carbon in one hour. These results will be able to use the important information for material cycle and ecological valuation of seaweed bed.

Fermentation Quality of Italian Ryegrass (Lolium multiflorum Lam.) Silages Treated with Encapsulated-glucose, Glucose, Sorbic Acid and Pre-fermented Juices

  • Shao, Tao;Zhanga, L.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1699-1704
    • /
    • 2007
  • This experiment was carried out to evaluate the effects of adding encapsulated-glucose, glucose, sorbic acid or prefermented juice of epiphytic lactic acid bacteria (FJLB) on the fermentation quality and residual mono- and disaccharide composition of Italian ryegrass (Lolium multiflorum Lam) silages. The additive treatments were as follows: (1) control (no addition), (2) encapsulated-glucose addition at 0.5% for glucose, (3) glucose addition at 1%, (4) sorbic acid addition at 0.1%, (5) FJLB addition at a theoretical application rate of $2.67{\times}10^5$ CFU (colony forming unit) $g^{-1}$, on a fresh weight basis of Italian ryegrass. Although control and encapsulated-glucose treatments had higher contents of butyric acid (33.45, 21.50 g $kg^{-1}$ DM) and ammonia-N/Total nitrogen (114.91, 87.01 g $kg^{-1}$) as compared with the other treated silages, the fermentation in all silages was clearly dominated by lactic acid. This was well indicated by the low pH (4.38-3.59), and high lactic acid/acetic acid (4.39-22.97) and lactic acid content (46.85-121.76 g $kg^{-1}$ DM). Encapsulated-0.5% glucose and glucose addition increased lactic acid/acetic acid, and significantly (p<0.05) decreased ammonia-N/total nitrogen, and the contents of butyric acid and total volatile fatty acids (VFAs) as compared with the control. However, there were higher butyric acid and lower residual mono-and di-saccharides on the two treatments as compared with sorbic acid and FJLB addition, and their utilization efficiency of water soluble carbohydrates (WSC) was lower than that of both sorbic acid and FJLB additions. Sorbic acid addition showed the lowest content of ethanol and ammonia-N/total nitrogen, and the highest content of residual fructose and total mono-and disaccharides as well as the higher lactic acid/acetic acid value. Sorbic acid addition decreased the loss of mono-and disaccharides, and inhibited the activity of clostridial and other undesirable bacteria, and greatly increased the utilization efficiency of fermentable substrates by epiphytic LAB. FJLB addition had the lowest pH value and the highest lactic acid content among all additive treatments, with the most intensive lactic acid fermentation occurring in FJLB treated silage. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB addition depressed clostridia or other undesirable bacterial fermentation which decreased the WSC loss and saved the fermentable substrate for lactic acid fermentation.

Effects of Non-protein Energy Intake on Whole Body Protein Synthesis, Nitrogen Retention and Glucose Turnover in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.536-542
    • /
    • 2007
  • The responses of whole body protein and glucose kinetics and of nitrogen (N) metabolism to non-protein energy intake (NPEI) were determined using an isotope dilution approach and measurement of N balance in three adult male goats. The diets containing 1.0, 1.5 and 2.0 times ME maintenance requirement, with fixed intake of CP (1.5 times maintenance) and percentage of hay (33%), were fed twice daily for each 21 d experimental period. After an adaptation period of 11 d, N balance was determined over 3 d. On day 17, whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were determined during the absorptive state by a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine, [$^2H_4$]tyrosine and [$^{13}C_6$]glucose, with simultaneous measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also measured at 6 h after feeding over 3 d. Nitrogen retention tended to increase (p<0.10) with increasing NPEI, although digestible N decreased linearly (p<0.05). Increasing NPEI decreased (p<0.01) ammonia N concentration, but increased acetate (p<0.05) and propionate (p<0.05) concentrations in the rumen. Despite decreased plasma urea N concentration (p<0.01), increased plasma tyrosine concentration (p<0.05), and trends toward increased plasma total amino N (p<0.10) and phenylalanine concentrations (p<0.10) were found in response to increasing NPEI. Increasing NPEI increased ILR of both glucose (p<0.01) and phenylalanine (p<0.05), but did not affect ($p{\geq}0.10$) that of tyrosine. Whole body protein synthesis increased (p<0.05) in response to increasing NPEI, resulting from increased utilization rate for protein synthesis (p<0.05) and unchanged hydroxylation rate of phenylalanine ($p{\geq}0.10$). These results suggest that increasing NPEI may enhance WBPS and glucose turnover at the absorptive state and improve the efficiency of digestible N retention in goats, with possibly decreased ammonia and increased amino acid absorption. In addition, simultaneous increases in WBPS and glucose ILR suggest stimulatory effect of glucose availability on WBPS, especially when sufficient amino acid is supplied.

Changes of Nitrogen Utilization Ratio , Protein Solution Ratio , free Sugars in Defatted Soybeans During the Manufacturing of Amino Acid Soysauce by a Low Hydrochloric Acid, Temperature (저염산(低鹽酸)으로 저온분해(低溫分解)한 아미노산(酸)간장 제조중(製造中) 질소이용률(窒素利用率), 단백분해율(蛋白分解率) 및 유리당(遊離糖)의 동향(動向))

  • Park, Chang-Hee;Park, Se-Ho;Lee, Suk-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.442-446
    • /
    • 1985
  • The changes of nitrogen utilization ratio (NUR), Protein solution ratio (PSR) and free sugar contents during the amino acid soysauce manufacturing process by a low hydrochloric acid, temperature were investigated. On hydrolysis by 6%-HCI (3 liquor rate of defatted soybean weight, 3LR) at $85^{\circ}C$, NUR and PSR were 74.51%, 56.49% at 65 hours. At the same time free sugars were detected glucose, galactose, arabinose, fructose, xylose. on hydrolysis at $95^{\circ}C$, NUR and PSR were 77.72%, 64.04% at 50 hours, and 5 free sugars of the above statement were detected at 5 hours. Remarkable decreases in the levels of free sugars, only glucose were observed after 80 hours of the hydrolysis. On hydrolysis by 12%-HCI(3LR) at $95^{\circ}C$, NUR and IRA were 88.41%, 69.47% at 50 hours, free sugar were nearly disappeared after 20-35hours. On hydrolysis, galactose's disappearence rate was faster than glucose's.

  • PDF