• Title/Summary/Keyword: Nitrogen recycling

Search Result 267, Processing Time 0.026 seconds

Discharge Standards of Kitchen-Disposer Wastewater by Treatment Types (디스포저(부엌용 오물분쇄기)-배수 전처리 방식 별 수질기준)

  • Chang, Ho Nam;Jeong, Chang Moon;Kang, Jong Won;Choi, Jin-dal-rae;Park, Young Sook;Ku, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.55-69
    • /
    • 2011
  • Use of disposer at the kitchens of Korean apartments is inevitable in treating their foodwaste having a water content of more than 80%. Also we have to ensure that this extra disposer-foodwaste BOD loadings be treated properly by installing/operating a pre-treatment system before this wastewater enters public sewer system. However, the degree of BOD removal should not be excessive since a BOD/N ratio higher than 5 is required for removing N/P at a municipal wastewater treatment plant. The removal of BOD/N in the pretreatment system rather than BOD alone can be an alternative solution in solving this problem. The particles separated by sedimentation, screen or packed-bed can be anaerobically digested at apartment sites to generate biogas that can be used for simple digester heating and to generate volatile fatty acids (VFAs) for nitrogen removal. We suggest that Korean government grants a temporary license (say for 5 years) to foodwaste treatment companies in collaboration with apartment construction companies which may do business and develop various kinds of disposer-foodwaste treatment systems in diverse wastewater discharge systems of Korean apartments.

Mechanisms on Struvite Production for Nitrogen and Phosphorus Recovery (질소/인 회수를 위한 Struvite 생성 메커니즘)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.15-20
    • /
    • 2019
  • The recovery of struvite using nitrogen and phosphorus in wastewaters is useful for prevention of eutrophication and use as fertilizer, but there are theoretical and technical issues to be resolved. Through the detailed literature review, this study discusses the possible reasonable prediction of struvite formation reaction by setting a feasible reaction equation with some theoretical considerations. In a technical aspect, the purity of struvite in solid precipitates can be promoted by excluding Ca in an effective way. As for the struvite reaction prediction issue, selection of proper equilibrium reaction as well as its reaction equilibrium coefficient is significant in the neutral and basic pH regions. The equilibrium reaction agrees well with the experimental batch test results. Considering the charge balance of the ions, the pH drop along struvite formation in a diluted solution can be predicted. Also, improvement of struvite purity through elimination of Ca can be expected by providing a highly concentrated ${NH_4}^+-N$ relative to ${HPO_4}^{2-}-P$ because ${NH_4}^+$ can enhance the thermodynamic driving force toward favorable struvite formation. Even though the phosphate reacts rapidly with Ca to form a solid precipitate, the thermodynamic driving force due to the high ${NH_4}^+$ activity can dissociate the phosphate-calcium precipitates and produce struvite.

Effect of Growth and Nitrogen Use Efficiency to Chinese Cabbage under Fermented Organic Fertilizer Treatment with Domestic Resource (국내 자원으로 제조한 발효 유기질비료가 배추의 생육 및 질소이용효율에 미치는 영향)

  • You-Jin Kim;So-Hui Kim;Sang-Min Lee;Cho-Rong Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.83-91
    • /
    • 2023
  • This study investigate growth responses of Chinese cabbage and nitrogen use efficiency (NUE) to application of fermented organic fertilizer produced from domestic organic resources for developing alternative materials instead of imported castor oil meal. Two types of fermented fertilizers (Fermented Organic Fertilizer A (OFA) and Fermented Organic Fertilizer B (OFB)) were produced by mixing distillers dried grains 30%, sesame cake 30%, rice bran 20% and fish meal 20% under different fermentation conditions. Treatment consisted of OFA is fermented for 21 days on plastic greenhouse, OFB is fermented for 5 days on 40℃, and MOF (Mixed Organic Fertilizer) is a fertilizer made with castor bean as the main ingredient. OFA, OFB and MOF were applied at the rate of 320 kg N/ha. Chinese cabbages were cultivated from Aug. to Nov. in 2022. Growth and yield of Chinese cabbage were no significant differences among all treatments except control (non-fertilized, NF). However, NUE of Chinese cabbage was higher the fermented fertilizer treatment (OFB: 81.4%, OFA: 79.1%) than the MOF (65.3%). It was observed that urease activity in the fermented fertilizer treatment was significantly higher than the MOF. This result confirmed that fermented fertilizers have similar effect on growth and yield with the MOF and could improve the NUE of crop.

Long-term Application Effects of Soil Amendments on Yield and Soil Properties in Paddy (논토양에서 토양개량제 장기연용에 따른 벼의 생육 및 토양특성 평가)

  • Kwon, Soon-Ik;Lee, Yun-Hae;Hwang, Hyun-Young;Kim, Sung-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • This research evaluated the long-term application effects of different soil amendments on yield, dissolved organic carbon, nitrogen and soil organic carbon stock in rice paddy. The experiment consisted of four different fertilizations; Inorganic fertilization (NPK), NPK+Lime (NPKL), NPK+Silicate (NPKS), NPK+Compost (NPKC). There was no significant difference in rice yield between the treatment groups in 1995, but the rice yields in the NPKL and NPKC treatments in 2019 increased by 4.3% and 14.3% compared to NPK. In terms of soil properties, the pH of NPKS(6.7) and NPKL(6.4) in 2019 increased the most compared to the soil pH before experiment(5.2). The organic matter(OM) content from NPKC treatment increased upto 34 and 27 g kg-1 in year of 1995 and 2019, respectively, compared to before the test. In NPKS and NPKL treatment, labile carbon and nitrogen content, used as a soil quality indicator, increased by 1.1-1.9 times over the control. From these result, it is suggested that type and application rate of soil amendment should be determined based on the soil analysis before cultivation for sustainable agricultural environment and productivity.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

Assessment of Compost Maturity on Their Different Stages with Microbial and Biochemical Mass Dynamics (미생물 및 생화학적 질량역적분석에 의한 퇴비화단계별 부숙도 평가)

  • Suresh, Arumuganainar;Choi, Hong Lim;Yao, Hongqing;Zhu, Kun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.36-47
    • /
    • 2009
  • Microbial and related biochemical mass of composts are important for optimization of its process and end-products. This study was carried out to assess the specific microbial and related biochemical mass which could be used as an indicator for compost maturity during composting stages. The samples from five compost plants were collected at three stages (Initial, Thermophilic and Mature) and analyzed for total aerobic bacteria (TAB), Coliforms, Escherichia coli, Actinomycetes and fungi. Significantly, the coliforms and E.coli counts decreased during the thermophilic stage and were completely eliminated during mature stage. However, the other microbial mass were completely eliminated during mature stage. Which disclosed that Coliforms and E.coli communities can be used as compost maturity indicator. Interestingly, the microbial biomass carbon and nitrogen ratio (MBC/MBN) were decreased a little during the thermophilic stage due to the decreasing number of coliforms, Ecoli and fungi, while the ratio increased during the mature stage due to increasing fungal and aerobic bacterial counts. In addition the heavy metals were shown strong negative correlation with Actenomycetes. This study provides insight to the evaluation of compost maturity as well as the quality by the metal-microbial interactions.

The Effect of Hypochlorous Acid on the Nitrogen Removal in Sea Water (차아염소산이 해수 내 암모니아 제거에 미치는 영향)

  • Kim, Young-Jun;Jang, Jae-Eun;Lee, Sang-Wook;Cha, Seok-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • In this study, we had analyzed the ammonia removal efficiency in sea animal-culturing aquarium water using hypochlorous acid (HOCl) which is very reactive, no harm to human, and with no formation of toxic trihalomethane. The amount of hypochlorous acid for the removal of ammonia varied with the concentration of ammonia in samples, with 90% of removal efficiency for 30 minute reaction time in the sea water where the ratio of hypochloous acid to ammonia (w/w) is about 8.5 ~ 9.0, and 100% removal in the sample with the ratio of 9.8 ~ 10.1. The removal efficiency with the time was shown to be 90% within 10 minute in the ratio of 9.0 ~ 10.0. These results will effectively be used for the proper management and protection of sea animals in large aquarium through water clarification with hypochlorous acid by calculating the right amount and reaction time.

Operational and Performance parameters of Anaerobic Digestion of Municipal Solid Waste (도시쓰레기 혐기성소화 운용 및 성능 지표)

  • Chung, Jae-Chun;Park, Chan-Hyuk;Son, Sung-Myung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.86-95
    • /
    • 2002
  • Anaerobic digestion of municipal solid waste(MSW) is recently getting attention due to energy generation and abatement of global warming. MSW has high solid content and low nitrogen content. Its major component is cellulose and hemicellulose. The conversion rate of organic portion of MSW to methane is approximately 50%, representing $0.2m^3/kg$ VS. Long hydraulic retention time is required for high solid content and inoculum should be mixed with the feed. When MSW is digested anaerobically, maximum limit of C/N ratio is 25 and the optimum concentration of $NH_3-N$ is 700mg/L. lime and sodium bicarbonate are used to adjust pH. Excess addition of sodium bicarbonate above 3,500mg/L will cause sodium toxicity. Thermophilic anaerobic digestion is effective in the control of pathogen although its operation and maintenance is difficult. To optimize the anaerobic digestion of MSW, it is necessary to understand the mechanism of microorganims involved in anaerobic digestion.

  • PDF

Release of Organic Matter and Behavior of Nitrogen in the Degradation of Sewage Sludge Using Ultrasound (초음파를 이용한 하수 슬러지 분해에서 유기물 방출과 질소 거동)

  • Yoon, Yong-Soo;Kang, Gwang-Nam;Choi, Suk-Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 2002
  • The sewage sludge with concentrated MLSS, ranging from 5967 to 8400mg/L was degraded by ultrasound. In this study, ultrasound treatment was used to investigate the behavior characterization of SBOD, sludge biodegradation, C/N ratio, TN, turbidity and sludge morphology. From the experimental results of C/N ratio change and TN removal, the optimal irradiation time was found to be 10 minutes. The results showed the relative index of sludge biodegradation(SBOD/TCOD) was enhanced to 0.76 from the initial value of 0.013 at the 5967mg/L MLSS, during the 60minutes treatment. Throughout this research, the results provide useful engineering reference data for reuse of sewage sludge using ultrasound.

  • PDF

Changes of Soil Physico-chemical Properties by Repeated Application of Chicken and Pig Manure Compost (계분 및 돈분퇴비의 연용에 의한 토양의 물리화학성 변화)

  • Chang, Ki-woon;Cho, Sung-hyun;Kwak, Jung-ha
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 1999
  • The changes of soil physico-chemical properties were investigated in the sandy loam soil amended with various application rates of chicken and pig manure composts. After repeated application of the composts for 3 years, total nitrogen content in soil treated with applied 120Mg/ha of chicken and pig manure composts was 2.1 g/kg equally. Organic matter content was 38.8 and 39.1 g/kg, available phosphate content was 602 and 585 mg/kg, and cation exchange capacity(CEC) was 10.1 and 12.4 cmol/kg in chicken and pig manure compost 120 Mg/ha treatment, respectively. Exchangeable K, Ca, Na, Mg contents, and electrical conductivity(EC) increased with the amount of applied compost. Also, with increased amount of applied compost, porosity of soil increased, but hardness, bulk density and Y value decreased.

  • PDF