This paper presents the removal characteristics of nitrogen oxides (NOx) by the dielectric ($Al_{2}O_{3}$) packed-bed plasma reactor. Reactor packed with 5-mm diameter $Al_{2}O_{3}$ beads, and was designed to remove NOx at atmospheric pressures from the moving pollution source such as diesel automobile. The experiments were conducted for applied voltages from 5 to 10kV, flue gas rate from 2 to 5L/min, and frequency from 0.5 to 2kHz. The NOx removal efficiency significantly increased with increasing applied voltage. Especially removal rate significantly increased with increasing frequency. However, in this experiment discharge power was relatively high.
A new combustion strategy called LIFC(Late Injection & Fast Combustion) was developed for simultaneous reduction of particulate matter(PM) and nitrogen oxides(NOx) in exhaust emission of diesel engines, In this study, effects of injection timing and injection pressure under relatively high EGR rate were investigated. The experiments were conducted in a conventional engine over a range of commercial engine speed. The test engine could be operated in LIFC up to 2000rpm / bmep 5 bar condition with significant reduction of NOx and PM. The experimental results showed potential for the mechanism of the simultaneous reduction of NOx and PM from HSDI diesel engines.
Nitrogen oxides(NOx) and smoke emissions of diesel engine are regarded as a source of air pollution, and there is a global trend to enforce more stringent regulations on these exhaust gas emissions. However, the trade-off relation of NOx and smoke is a main obstacle to reduce both of them simultaneously. In this paper, experiments were conducted with an oxygenated fuel(diethyl ether) as an effective way to improve the trade-off relation of NOx and smoke. Exhaust emissions of diesel fuels with DEE were influenced by the additive content of DEE and the injection timing. Especially, DEE effected more at the high engine speed and load than at the low engine speed and load. Diesel fuel blended with DEE 10% was a desirable blend for the simultaneous reduction of NOx and smoke.
연소 반응 시 발생하는 질소산화물은 산성비와 미세먼지 발생에 많은 영향을 미치는 물질이다. 이에 대한 저감 방법으로 고비용의 탈질설비 대신 지연연소 등의 방법에 대한 연구가 많이 이루어지고 있다. 이러한 연구들 중에 적은 양의 공기로 많은 양의 배기가스를 재순환 할 수 있는 코안다 노즐을 이용한 배기가스 재순환 연소에 대한 연구가 최근에 이루어지고 있다. 본 연구에서는 배기가스 재순환 배관에 코안다 노즐을 사용하여 배기가스를 재순환하는 재순환 버너의 양쪽 출구가 트인 형상에 대하여 전산유체해석을 통해 연구를 수행하였으며 연소 유동의 압력, 유선, 온도, 연소 반응 속도와 질소산화물의 분포 특성을 살펴보았다. 배기가스를 재순환하여 연소용 공기와 혼합된 기체가 원통의 접선방향으로 유입되어 연료노즐 출구 부근에서 압력이 낮은 영역이 존재하고 이에 따라 원통 버너의 중심부근에는 버너의 가운데 부분으로 역류가 형성되며 가장자리 부분으로 배기가스가 배출되는 것을 확인하였다. 배기가스가 유입되는 부분이 버너의 오른쪽에 있어서 버너의 오른쪽으로 연소반응이 일어나며 상대적으로 온도분포와 NOx 분포가 높게 나타났다. 연소용 공기비를 1.0에서 1.8까지 변화하여 NOx 생성을 관찰한 결과, 공기비가 1.0에서 1.5까지는 평균 NOx 생성이 감소하다가 공기비가 1.8일 때 급격히 증가하는데 이는 NOx 생성 반응은 온도의 지수승에 비례하게 되는데 공기비가 1.5이상이 되면서 온도의 영향을 많이 받아서 NOx 생성 반응이 오른쪽 영역에서 급격히 증가하는 것으로 판단된다.
An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOX). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since Particular Matter (PM) fouling reduces the efficiency of an EGR cooler, a trade-off exists between the amount of NOX and PM emissions, especially at high engine loads. In the present study, engine dynamometer experiments have been performed to investigate the heat exchange characteristics of the stack-type EGR coolers with wave fin pitches of 3.6 and 4.6 mm. The results show that the heat exchange effectiveness is decreased as surface area decrease with pitch of 4.6 mm due to PM fouling. As surface area increase at pitch of 3.6 mm, super-cooling happens in the recirculated exhaust gas.
HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.
There is a lot of concern around the world about air pollution from ships. The majority of air pollution from ships comes from fuel combustion. The combustion process produces various air pollutants such as carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM), each of which has adverse effects on people and is a major environmental problem. To prevent this, the International Maritime Organization (IMO) has strengthened the regulation of pollutant emissions through the Convention for the Prevention of Marine Pollution. This paper discusses the types of air pollutants emitted by ships, their current status, and the latest technologies to reduce emissions of NOx and SOx.
The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.
저공해 연소를 위한 방법 중 하나인 배기가스 재순환(flue gas recirculation, 이하 FGR)은 질소산화물 저감에 효과적인 연소 기법이다. 이를 메탄/공기 대향류 예혼합화염에 적용하여 화염의 특성변화와 NOx 생성 기구를 파악하기 위한 수치해석을 진행하였다. 신장률에 따라 배출되는 생성물들의 몰분율이 달라진다는 점을 고려하여 재순환율은 생성물을 기준으로 정의되었으며, 실제 연소 시스템을 반영하기 위해 주요 생성물인 CO2, H2O, O2 그리고 N2를 희석제로써 재순환하였다. FGR 기법이 적용됨에 따라 특정한 신장률 조건에서 최대화염 온도의 전환점이 발견되었다. 또한, 재순환율이 증가함에 따라 온도와 NO의 경향이 달리 나타났으며, 이를 파악하고자 NO 반응을 열적 NO와 Fenimore NO로 구분하여 분석하였다.
A study of low NOx atomizer was carried out to reduce nitrogen oxides(NOx) in a liquid fuel burner flame. The basic concept of NOx reduction in this atomizer is the fuel 2-staging combustion which is generated by a single atomizer forming two different stoichiometric flames. Two orifices swirl atomizer was selected and modified to realize this concept, and it was tested to obtain the design process of low NOx atomizer. These experiments were achieved to find out the relationship between the injection pressures and the flow rate, spray angle and drop size of swirl atomizer as well as to confirm the NOx reduction concept in real plant(power boiler). In comparison between experimental and theoretical results, the correct discharge coefficient and spray angle were obtained. In real burning test, NOx reduction rate was reached to above 27% of the case using conventional swirl atomizer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.