• 제목/요약/키워드: Nitrogen doped TiO2

검색결과 32건 처리시간 0.016초

질소 도핑 TiO2의 Methylene Blue 광분해 제거에의 적용 (Application of Photocatalytic Decomposition of Methylene Blue on N-doped TiO2)

  • 백미화;최수아;김동수
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.707-712
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ particles have been successfully prepared using titanium tetraisopropoxide as the Ti source and urea as the nitrogen source. As-prepared nitrogen-doped $TiO_2$ was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET) and ultraviolet-visible light (UV-vis) absorption spectra techniques. Photocatalytic degradation of Methylene Blue (MB) has been carried out in both solar light (UV-vis) and the visible region (${\lambda}=420nm$). Nitrogen-doped $TiO_2$ exhibits higher activity than the commercial $TiO_2$ photocalyst, particularly under visible-light irradiation because bandgap of nitrogen-doped $TiO_2$ becomes remarkably decreased.

Visible-photoresponsive Nitrogen-Doped Mesoporous TiO2 Films for Photoelectrochemical Cells

  • Bae, Jae-Young;Yun, Tae-Kwan;Ahn, Kwang-Soon;Kim, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.925-928
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ ($TiO_2$:N) nano-particles with a pure anatase crystalline structure were successfully synthesized through the hydrolysis of $TiCl_4$ in an ammonia aqueous solution. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), $N_2$-sorption, and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The absorption edge of nitrogen-doped $TiO_2$ shifted into the visible wavelength region. The photoelectrochemical (PEC) performances were investigated for the $TiO_2$ mesoporous electrodes doped with different nitrogen concentrations. The $TiO_2$:N electrodes exhibited much higher PEC responses compared to the pure $TiO_2$ electrode because of the significantly enhanced visible-photoresponsibility of the $TiO_2$:N electrodes.

암모니아 표면처리 된 질소 도핑 $TiO_2$ 광촉매의 합성 및 광분해반응 (Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia)

  • 김예솔;배병철;이영석
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.308-312
    • /
    • 2012
  • 암모니아를 이용하여 질소가 도핑된 광촉매를 제조하고 이에 따른 가시광 광촉매 활성효과를 알아보았다. 질소 도핑된 $TiO_2$ 광촉매가 태양광영역에서 분해되는 정도를 확인하기 위해서 태양광에 조사하에 메틸렌블루 염료분해 실험을 수행하였다. SEM 이미지 분석결과 질소가 도핑된 $TiO_2$ 광촉매의 응집 입자가 감소함을 알 수 있었고, XRD 결과 $600^{\circ}C$에서 열처리된 질소 도핑 $TiO_2$ 광촉매는 아나타제 구조와 루타일이 존재하고 있음을 알 수 있었다. 또한, X선 광전자 분광기 분석을 통하여 암모니아 반응시간에 따라서 $TiO_2$ 광촉매에 N의 조성 증가를 알 수 있었다. $TiO_2$ 광촉매의 질소 도핑에 의하여 메틸렌블루에 대한 광분해 효과가 도핑되지 않은 시료에 비해 증가하였다. 또한 질소 도핑은 $TiO_2$ 광촉매의 결정에도 영향을 주었다.

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Photocatalytic Degradation of Quinol and Blue FFS Acid Using TiO2 and Doped TiO2

  • Padmini., E.;Prakash, Singh K.;Miranda, Lima Rose
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.332-335
    • /
    • 2010
  • The photodegradation of the model compounds Quinol, an aromatic organic compound and Acid blue FFS, an acid dye of chemical class Triphenylmethane was studied by using illumination with UV lamp of light intensity 250W. $TiO_2$ and $TiO_2$ doped with Boron and Nitrogen was used as catalyst. The sol-gel method was followed with titanium isopropoxide as precursor and doping was done using Boron and Nitrogen. In photocatalytic degradation, $TiO_2$ and doped $TiO_2$ dosage, UV illumination time and initial concentration of the compounds were changed and examined in order to determine the optimal experimental conditions. Operational time was optimized for 360 min. The optimum dosage of $TiO_2$ and BN doped $TiO_2$ was obtained to be 2 $mgL^{-1}$ and 2.5 $mgL^{-1}$ respectively. Maximum degradation % for quinol and Blue FFS acid dye was 78 and 95 respectively, at the optimum dosage of BN-doped $TiO_2$ catalyst. It was 10 and 4% higher than when undoped $TiO_2$ catalyst was used.

질소를 도핑한 TiO2를 이용한 부식산 분해 (Degradation of Humic Acid Using N-Doped TiO2)

  • 소지양;이동석
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.119-125
    • /
    • 2011
  • N-doped Titanium oxides were prepared by using urea as a source of nitrogen. The photoactivities of the doped $TiO_2$ were evaluated on the basis of degradation of humic acid in aqueous solutions with different light sources, ultraviolet lamp, fluorescent lamp and solar light. XRD analysis was conducted to identify the crystal structure of the synthesized photocatalysts. N-doped $TiO_2$ and $pure-TiO_2$ was anatase type. SEM results showed that spherical particles were formed, which are the characteristics of the anatase form. N doped $TiO_2$ showed higher $UV_{254}$ decrease ratio and DOC removal ratio compared to $pure-TiO_2$. The humic acid degradation reaction using the UV-A lamp and UV-C lamp was assigned to pseudo-first order reaction. For solar light, only $pure-TiO_2$ and $N-TiO_2$ exhibited the pseudo-first order reaction.

  • PDF

질소 도핑된 이산화티타늄의 가시광 광촉매 활성 연구 (Visible Light Induced Photocatalytic Activity of N-doped TiO2)

  • 이서희;이창용
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.298-302
    • /
    • 2018
  • 질소가 도핑된 이산화티타늄의 광촉매 특성을 알아보았다. 질소가 도핑된 이산화티타늄에 대하여 자외선 및 가시광선 분위기에서 메틸렌블루 광촉매 분해를 수행하였다. XPS 분석을 통해 제조한 $TiO_2$에서 질소(N)가 산소(O)와 치환되었음을 확인하였다. UV-Vis DRS 분석 결과 질소가 도핑된 무정형 $TiO_2$ 시료에서는 가시광선을 거의 흡수하지 않고 자외선을 흡수하는 반면 무정형/anatase 혼재 $TiO_2$ 시료의 경우 가시광선 흡수가 상당히 증가하였다. 질소가 도핑된 anatase $TiO_2$ 시료는 자외선 및 가시광선 조사에서 메틸렌블루 광분해 반응이 나타났다. 그러나 가시광선 조사에서 분해율은 자외선 조사의 분해율보다 낮았다. 무정형/anatase 혼재 $TiO_2$ 시료의 경우 자외선과 가시광선 조사에서 anatase $TiO_2$ 시료의 분해율보다 높았다. 이러한 결과는 anatase $TiO_2$ 시료에 비해 3배 정도 큰 무정형/anatase 혼재 $TiO_2$ 시료의 높은 표면적이 질소 도핑된 작은 anatase 입자와 관련이 있음을 보여준다.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • 김형주;김재현;이청학;현택환;최원용;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권12호
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.