• Title/Summary/Keyword: Nitrogen discharge

Search Result 386, Processing Time 0.027 seconds

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

Evaluation of Environmental and Economic Impacts of Advanced Wastewater Treatment Plants with Life Cycle Assessment (고도 하수처리장의 전과정평가에 따른 환경성 및 경제성 평가)

  • Pyo, SeHee;Kim, MinJeong;Lee, SeungChul;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.503-515
    • /
    • 2014
  • A lot of existing wastewater treatment plants (WWTPs) are rebuilt or retrofitted for advanced wastewater treatment processes to cope with reinforced effluent criteria of nitrogen and phosphorous. Moreover, how to treat the wasted sludge from WWTPs has been also issued since the discharge of the wasted sludge into ocean is impossible from 2011 due to the London Convention 97 protocol. These trend changes of WWTPs get a motivation to assess environmental and economic impacts from the construction stage to the waste stage in WWTPs. Therefore, this study focuses on evaluation of environmental and economic impacts of the advanced wastewater treatment processes and waste sludge treatment process by using life cycle assessment. Four advanced wastewater treatment processes of Anaerobic/Anoxic/Oxic ($A_2O$), 5 stages-Bamard Denitrification Phosphate (Bardenpho), Virginia Initiative Plant (VIP), and Modified University of Cape Town (MUCT) are chosen to compare the conventional activated sludge (CAS) and three waste sludge treatment methods of land fill, incineration, and composting are used. To evaluate environmental and economic impacts of each advanced wastewater treatment processes, life cycle assessment (LCA) and life cycle cost (LCC) are conducted based on International organization for standardization (ISO) guidelines. The results clearly represent that the $A_2O$ process with composting shows 52% reduction in the environmental impact than the CAS process with landfill. On the other hand, the MUCT process with composting is able to save 62% of the life cycle cost comparing with the CAS process with landfill. This result suggested the qualitative and quantitative criteria for evaluating eco-environmental and economic technologies of advanced treatment processes and also sludge treatment method, where their main influence factors on environmental and economic impacts are analyzed, respectively. The proposed method could be useful for selecting the most efficient and eco-friendly wastewater treatment process and sludge treatment method when retrofitting the existing WWTPs to advanced treatments.

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

Effects of Early Parenteral Nutrition for Extremely Low Birth Weight Infants (초극소 저출생 체중아(${\leq}$1,000 g)에서 조기에 시작하는 정맥 영양공급의 효과)

  • Ahn, So-Yoon;Shin, Ji-Hun;Shin, Jung-Hee;Sung, Se-In;Jung, Ji-Mi;Kim, Jin-Kyu;Chang, Yun-Sil;Jang, Yun-Sil;Park, Won-Soon
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.76-81
    • /
    • 2011
  • Purpose: The object of this study was to evaluate the efficacy of early total parenteral nutrition with early amino acid in extremely low birth weight infant (ELBWI). Methods: We retrospectively analyzed the medical records of all ELBWIs who were born and admitted to Samsung Medical Center from January 2003 to December 2003 and January 2009 to December 2009 and alive at the time of discharge. Data for nutritional status and morbidities were compared between period 1 (2003, n=22), in which parenteral nutritional support was started gradually over several days and period 2 (2009, n=38), in which parenteral nutrition with amino acid was started as soon as possible after birth. Results: Compared to period 1, birth weight and Apgar score were lower in period 2. The intake amount of glucose, amino acid and total calorie was higher and the level of blood urea nitrogen was increased more from 7th day to 14th day after birth in period 2 when compared than period 1. The weight gain velocity was faster at 7th and 14th postnatal day in period 2. There were no differences in the incidence of necrotizing enterocolitis, moderate to severe bronchopulmonary dysplasia, and severe intraventricular hemorrhage (${\geq}$ Gr III) between two periods but, the incidence of periventricular leukomalacia(PVL) was significantly lower in period 2. Conclusion: Early initiation of total parenteral nutrition with early amino acid in ELBWIs was beneficial at weight gain with lowering catabolism and increasing anabolism. And it could be related with reducing the incidence of PVL.

Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios (SWAT 및 CE-QUAL-W2 모델을 연계 활용한 기후변화 시나리오에 따른 용담댐 유입수 및 호내 수질 변화 예측)

  • Park, Jongtae;Jang, Yujin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.703-714
    • /
    • 2017
  • This paper analyzes the impact of two climate change scenarios on flow rate and water quality of the Yongdam Dam and its basin using CE-QUAL-W2 and SWAT, respectively. Under RCP 4.5 and RCP 8.5 scenarios by IPCC, simulations were performed for 2016~2095, and the results were rearranged into three separate periods; 2016~2035, 2036~2065 and 2066~2095. Also, the result of each year was divided as dry season (May~Oct) and wet season (Nov~Apr) to account for rainfall effect. For total simulation period, arithmetic average of flow rate and TSS (Total Suspended Solid) and TP (Total Phosphorus) were greater for RCP 4.5 than those of RCP 8.5, whereas TN (Total Nitrogen) showed contrary results. However, when averaged within three periods and rainfall conditions the tendencies were different from each other. As the scenarios went on, the number of rainfall days has decreased and the rainfall intensities have increased. These resulted in waste load discharge from the basin being decreased during the dry period and it being increased in the wet period. The results of SWAT model were used as boundary conditions of CE-QUAL-W2 model to predict water level and water quality changes in the Yongdam Dam. TSS and TP tend to increase during summer periods when rainfalls are higher, while TN shows the opposite pattern due to its weak absorption to particulate materials. Therefore, the climate change impact must be carefully analyzed when temporal and spatial conditions of study area are considered, and water quantity and water quality management alternatives must be case specific.

The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea (광양만에서 춘계와 하계 영양염류 첨가가 식물플랑크톤군집의 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;choi, Hyun-Woo;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2014
  • In order to estimate the effect of nutrients addition for phytoplankton growth and community compositons in spring and summer season, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Nutrient additional experiments were also conducted to identify any additional nutrient effects on phytoplankton assemblage using the surface water for the assay. Bacillariophyceae occupied more than 90% of total phytoplankton assembleges. Of these, diatom Eucampia zodiacus and Skeletonema costatum-like species was mainly dominated in spring and summer, respectively. Here, we can offer the season why the two diatom population densities were maintained at high levels in both seasons. First, light transparency of spring season in the euphotic zone was greatly improved in the bay. This improvement is one of important factor as tigger of increase in E. zodiacus population. Second, low salinity and high nutrient sources supplied by Seomjin River discharge are a main cue for strong bottom-up effects on S. costatum-like species during the summer rainy season. Based on the algal bio-assays, although maximum growth rate of phytoplankton communities at inner bay (St.8) were similar to those of outer bay (St.20), half-saturation constant ($K_s$) for phosphate at outer bay was slightly lower than those of inner bay. This implied that adapted cells in low nutrient condition of outer bay may have enough grown even the low phosphate and they also have a competitive advantage against other algal species under low nutrient condition. In particular, efficiency of N (+) addition in summer season was higher compared to control and P added experiments. In the bay, silicon was not a major limiting factor for phytoplankton growth, whereas nitrogen (N) was considered as a limiting factor during spring and summer. Therefore, a sufficient silicate supply form water mixing Si recycled from diatom decomposition and river water is favorable form maintaining diatom ecosystems in Gwangyang Bay.

A Study on the Forest Vegetation and Soil-environmental Factors Affecting the Water Quality of Iwonch on Stream (이원천 수질에 미치는 삼림식생과 토양환경요인)

  • Bang, Je-Yong;Yang, Keum-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • Characterization of the analysis of forest vegetation, soil environmental conditions and water quality were performed from March 2003 to March 2007. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, forest vegetation and soil environmental conditions were surveyed. The vegetation can be divided into 10 types by $Z\ddot{u}rich$-Montpellier school's method. Pearson coefficients between vegetation type and water quality were correlated with dissolved oxygen (DO) in the Quercus variabilis community at the 5% level and total phosphorus (TP) in the Larix leptolepis plantation at the 1% level. Especially total phosphorous and total nitrogen increased in small basins where the proportion of cultivated and residential area increased. The analysis of influences of pollutant discharge on water quality showed that pollutant charge was very low in forest land area ($Y_{T-P}$=-0.0017X+0.2215, r=0.16, $Y_{COD}$=- 0.0395X+8.5051 r=0.47). The soil types of western area were comparatively simple, but those of eastern area were complicated with regosols, red-yellow soils, lithosoles, etc. The pH, total solid (TS) and volatile substance (VS) of the forest and agricultural land soils collected in each site were 5.4~6.9, 75.8~80.2%, and 3.80%~5.80%, respectively. According to the analytical result of soil environmental conditions, heavy metal contents fell short to the mean value of natural conditions. Runoff amount (Y) and depth of topsoil (X) were negatively correlated, $Y_{ron}=-1.0088X_{top}+35.378$ (r=0.68). The correlation was much lower in up-stream but much higher in down-stream, because permeation into soil particle was larger on down-stream due to its more or less gentle slope. Pearson coefficients between soil pH and water pH were statistically significant at 1% level.

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

A Study on the Characteristics Using Pig Manure Under Aerobic Air Flow Rate During Composting (돈분이용 퇴비화과정에서의 공기공급량별 퇴비화 특성변화에 관한 연구)

  • Kwag, J.H.;Kim, J.H.;Jeong, K.H.;Cho, S.H.;Ahn, H.K.;Choi, D.Y.;Jeong, M.S.;Lee, S.C.;Kang, H.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • This study was carried out to investigate on the composting characteristics variation accoding to air supply capacity in Pig manure. The composting of pig manure is economical and efficiently process. The fermented compost was added in pig manure mixed with sawdust was composting reators. Air supply capacity levels of fermented compost on the pig manure mixed with sawdust were regulated at 50, 100, 150 and 200$\ell/m^3$/min. respectively. The obtained results can be followed as bellow; The temperature variations of experimental composting piles during composting for the different of T-1 reach $40^{\circ}C$ in 2 days, T-2, T-3 and T-4 reach $60^{\circ}C$ in 2 days and T-3, T-4 maintained until 8 days. The decreases in water contents per each square meter for the different of T-1 (50 l/$m^3$/min), T-2(100 l/$m^3$/min), T-3(150 l/$m^3$/min) and T-4(200 l/$m^3$/min.), The decreases ratio in water contents was T-1, T-2, T-3 and T-4 were 15.4%, 28.8%, 33.4% and 35.2%. The decreases ratio in weight was T-1, T-2, T-3 and T-4 were 7.6%, 15.6%, 16.8% and 16.9% respectively. The variations of oxygen concentration from composting period in case of oxygen discharge concentration T-1, T-2, T-3 and T-4 were 9 ppm. respectively. Fertilizer components after composting were examined. Nitrogen contents of the T-1, T-2, T-3 and T-4 were 0.45%, 0.44%, 0.42% and 0.44%, and P2O5 contents were T-1, T-2, T-3 and T-4 were 0.37%, 0.41%, 0.42% and 0.44% respectively. Therefore, the compost curing air supply of air volumes at least 150$\ell$/min/min. or more to supply the aerobic composting pig manure normally are judged to be possible.

Evaluations of Ecological Habitat, Chemical Water Quality, and Fish Multi-Metric Model in Hyeongsan River Watershed (형산강 수계의 생태 서식지, 화학적 수질 및 어류의 다변수모델 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.279-287
    • /
    • 2010
  • This study was to evaluate ecological conditions of Hyeongsan River watershed from April to September 2009. The ecological health assessments was based on Qualitative Habitat Evaluation Index (QHEI), water chemistry during 2000~2009, and the fish multi-metric model, Index of Biological Integrity (IBI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. Values of IBI averaged 25.4 (n=6), which is judged as a "fair" condition (C) after the criteria of Barbour et al. (1999). The distinct spatial variation was found in the IBI. Physical habitat health, based on the values of QHEI, varied from 76 in the downriver (H6) to 150.5 in the headwater (H1) and was evidently more disturbed in the downriver reach. Values of BOD and COD averaged 2.4 $mgL^{-1}$ (range: 0.3~13.8 $mgL^{-1}$) and 4.3 $mgL^{-1}$ (scope: 0.6~12.8 $mgL^{-1}$), respectively during the study period. Total nitrogen (TN) and total phosphorus (TP) averaged 3.0 $mgL^{-1}$ and 103.5 ${\mu}gL^{-1}$, respectively, indicating a severe eutrophication, and the nutrients increased more in the downriver than the headwater. Overall, physical, chemical and IBI parameters showed a typical downriver degradation along main axis of the river from the headwater-to-the downriver. This was mainly attributed to livestock waste and residential influences along with industrial discharge from the urban region.