• Title/Summary/Keyword: Nitrogen Uptake

Search Result 592, Processing Time 0.029 seconds

Effects of Nitrogen Application on Growth and Bioactive Compounds of Chrysanthemum indicum L. (Gamgug) (질소시비가 감국의 생육 및 유효성분에 미치는 영향)

  • Kim, Dong-Kwan;Lee, Kyung-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.363-368
    • /
    • 2009
  • To fulfill the increasing demand for a high quality of flower, we investigated the effects of nitrogen application on plant growth, yield and bioactive compounds of Chrysanthemum indicum L.. C. indicum L. was cultivated in a pot scale, and nitrogen applied with the level of 0 (N0), 50 (N50), 100 (N100), 150 (N150), 200 (N200) and $300\;(N300)\;kg\;ha^{-1}$ to suggest optimum rate of nitrogen fertilization. Phosphate and potassium applied the same amount of $80-80\;kg\;ha^{-1}$ ($P_2O_5-K_2O$) in all treatments. Growth characteristics and yields of C. indicum L. were significantly affected by nitrogen application. Maximum yield achieved in 265 and $295\;kg\;ha^{-1}$ N treatment on the whole plant and the flower parts, respectively. The nitrogen content and uptake of whole plant significantly increased by the increase of nitrogen application. Five major components of essential oil, $\alpha$-pinene, 1,8-cineol, chrysanthenone, germacrene-D, and $\alpha$-curcumene in flowerheads of C. indicum L. occupied approximately 40% of peak area, germacrene-D decreased by the increase of nitrogen application among them. However, cumambrin A contents in the flower parts of C. indicum L. were affected negatively by the increase of nitrogen application, but total yields of cumambrin A in flower part significantly increased. Conclusively, nitrogen fertilization could increase the yield of flowerheads. The optimum application level of nitrogen fertilizer might be on the range of $265-295\;kg\;ha^{-1}$ in a mountainous soil.

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Effects of Dissolved Inorganic and Organic Nutrient (Nitrogen and Phosphorus) on the Growth of Dinoflagellate Alexandrium affine (와편모조류 Alexandrium affine의 생장에 미치는 용존태 무기 및 유기 영양염(질소와 인)의 영향)

  • Oh, Seok Jin;Kim, Ji Hye;Park, Kyung Woo;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.630-638
    • /
    • 2021
  • In this study, we investigated the effects of dissolved inorganic and organic nutrient on the growth of dinoflagellate Alexandrium affine (LIMS-PS-2345). The maximum uptake rates (ρmax) and half saturation constants (Ks) calculated from the uptake kinetics experiment were 77.0 pmol/cell/hr, 17.6 μM for nitrate and 15.5 pmol/cell/hr, 3.88 μM for phosphate, respectively. These results suggested that this species has high inorganic nutrient demand and a low affinity for inorganic nutrients. During the utilization of organic nutrients for A. affine, growth rates of experimental groups added by organic nitrogen (urea and glycine) and phosphorus (adenosine triphosphate and glycerol phosphate) were above 70 %, compared to the experimental groups added by inorganic nutrients. Thus, A. affine may need to utilize organic nutrients to understand the dominant strategy and advantageous position in the interspecific competition within low inorganic nutrient environments.

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage IV. Influence of Growth Characters and Nutrient Uptake of Leaf Blade, Rachis Branches and Chaff by Nitrogen, Phosphate, Potassium and Silicate (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 미치는 연구 IV. 3요소와 규산시용량이 생육 및 엽신. 지경, 영의 양분흡수에 미치는 영향)

  • 최수일;황창주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.326-335
    • /
    • 1986
  • In cold water irrigation, some growth and yield were decreased by heavy application of nitrogen but in-creased by heavy application of phosphate, potassium and silicate. Among growth characters, number of spikelets per panicle and grain filling ratio were affected significantly. Cold damage in number of spikelets, spikelet sterility and degeneration of spikelet and branch could be reduced by increasing application amount of phosphate, potassium and in particular silicate. Number of spikelets per branch was closely related with number of spikelets per secondary branches. Number of abortive grains and immature grains had negative correlations with yield and could be reduced by heavy application of phosphate, potassium and silicate. Heavy nitrogen application led to high total nitrogen content and restrained the uptake of phosphate, potassium and silicate. However, adverse results were showed by heavy application of phosphate, potassium and silicate. Inorganic element contents in branches were lower than those in leaf blades, but higher than those in chaff. Branches showed little differences in inorganic element contents between heading stage and maturing stage. Inorganic element contents in branches were considered to be influenced by those in leaf blades and to affect those in chaff. Some growth characters related to source and sink, such as degeneration of branches and spike-lets, sterility ratio, ripening ratio, and yield had closer relationship with nutrient contents in branches than those in leaf blades and chaff. The results demonstrated that the rachis branch not only was a transport pathway of nutrient but also would play an important role in accumulating substances in panicles.

  • PDF

The Effect of Ectomycorrhizae ans Nitrogen Levels on the Growth of Quercus serrata Seedlings (외생균근균(外生菌根菌)과 질소시비수준(窒素施肥水準)이 졸참나무 묘목생장(苗木生長)에 미치는 영향(影響))

  • Oh, Kwang In;Park, Moon Su
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.160-167
    • /
    • 1989
  • This study was carried out to examine the mycorrhizal development, growth, and nutrient uptake of Quercus serrate seedlings while they were grown for 120 days in a pot medium with and without Pisolithus tinctorius, and also with applications of nitrogen levels. The results were summarized as follows : 1) Inoculated seedlings showed ectomycorrhizal formation of 61. 75%. 2) In the root development, the best nitrogen level was $300{\mu}g/ml$ for inoculated seedlings, and the number of short roots, the number of primary lateral roots and total length of lateral roots were 34.3, 30.7, and 17.2% greater, respectively, than noninoculated seedlings. 3) Growth of shoot, leaf area, total dry weight, and volume of inoculated seedlings were increased 26.9, 52.3, 31.7, and 85.7% greater respectively, than noninoculated seedlings. 4) Inoculated seedlings were more enhanced in the uptake of N, P, K, and Ca than noninoculated seedlings, and the enhanced uptake was best shown at $300{\mu}g$ N/ml treatment.

  • PDF

A Study on the Removal of Nitrogen and Phosphorus of Municipal Wastewater with Biological Coated Media (미생물 코팅 담체를 이용한 하수의 질소$\cdot$인 제거에 관한 연구)

  • Kim Young-Gyu;Cho Il-Hyoung
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.27-35
    • /
    • 2006
  • This study was carried out to investigate the removal of nitrogen and phosphorus in municipal sewage depending on existence of biological coated media in BCM reactor. The reactor with biological coated media is the process combining $A_2/O$ process. The removal efficiencies for $COD_{Mn},\; BOD_5,\;SS$, T-N and T-P were $78\%,\;90.5\%,\;92.3\%,\;61.9\%,\;60.2\%$, respectively. The specific nitrification rate$(mgNO_3-N/gMLSS{\cdot}d)$ of Contact aeration basin was 52.2 and the specific denitrification rate$(mgNO_3N/gMLSS{\cdot}d)$ in anoxic basin was 95.1. Also, phosphorus release$(mgPO_4-P/gMLSS{\cdot}d)$ in Anaerobic basin was 71.8 and Phosphorus uptake$(mgPO_4-P/gMLSS{\cdot}d)$ in contact aeration was 27.1.

Nitrogen and Phosphorus Removal Characteristics by the Variation of Aeration Time in SBR (SBR에서 포기기간 변경에 따른 질소.인 제거 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus by the variation of aeration time in four sequencing batch reactors (SBRs). In R1 which has the shortest aeration time as 1 h, MLVSS concentration in reactor decreased by the wash-out of biomass because of the poor sedimentation. The TOC removal efficiencies were almost similar in 3 reactors except R1. At the low aeration time as 1 h, the nitrification was severely inhibited by the deficiency of oxygen. ${NH_4}^+$-N removal efficiency was decreased by the decrease of aeration time. At the aeration time over 2 h, the phosphorus removal efficiency was not affected by the variation of aeration time. The nitrification was inhibited but the phosphorus release and uptake was not inhibited by the decrease of low aeration time. Therefore, we can see that the phosphorus removal microorganisms are superior to nitrification microorganisms in oxygen utilization.

A Comparative Study on the Nitrogen Metabolism of Symbiotic Chlorella from Paramecium bursaria with Chlorella ellipsoidea (Paramecium bursaria와 공생하는 Chlorella와 Chlorella ellipsoidea의 질소대사에 관한 비교연구)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.29 no.3
    • /
    • pp.145-156
    • /
    • 1986
  • The excretion of ammonia and glutamine synthetase activities were measured in aposymbiotic Paramecium and symbiotic Paramecium. The uptake of nitrate and ammonia, and specific enzyme activities of nitrate reductase, glutamate dehydrogenase and glutamine synthetase were investigated in symbiotic Chlorella from Paramecium bursaria and Chlorella ellipsoidea. The ammonia concentration in the culture media of aposymbiotic Paramecium was increased according to the growth of the Paramecium but it was not changed in symbiotic Paramecium. Nitrate, the major nitrogen source, was taken up at a rate of 0.635 nmol/ 106 Chlorella/hr in Chlorella ellipsoidea. Most of ammonia was assimilated to glutamine by glutamine synthetase, of which acitivty was 1,467 $\mu$mol/mg protein/min in Chlorella elliposidea. Contrary to Chlorella ellipsoidea, ammonia and glutamine transported from the Paramecium were the nitrogen source of symbiotic Chlorella and ammonia was taken up at a rate of 3.854 nmo./106 Chlorella/hr into synmbiotic Chlorella. Most of ammonia were assimilated to glutamate by glutamate dehydrogenase in symbiotic Chlorella. The glutamate dehydrogenase (GDH/NADH) activity was 0.851 $\mu$mol/mg protein/min.

  • PDF

Yield Response to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Nitrogen Nutrition Status of Rice Plant (벼 유수분화기 생장 및 질소영양상태에 따른 수량의 수비질소 반응)

  • Kim, Min-Ho;Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.571-583
    • /
    • 2006
  • To secure high yield and good quality of rice, plant growth and nitrogen (N) nutrition status should be taken into account for managing panicle N topdressing (PN). This research aimed at investigating the rice yield response to PN under different plant growth and N nutrition status that was conditioned by different rates of basal and tillering N fertilizer (BTN). Stepwise multiple regression (SMR) was used for the analysis of yield response to (i) BTN and PN, and (ii) shoot N content at PIS (BTNup) and shoot N uptake from PIS to harvest (PNup). Rice yield increased significantly as BTN and PN Increased, but there was no significant interaction between BTN and PN. Yield increased almost linearly with the increasing BTN and PN up to $10{\sim}12$ and $6{\sim}7\;kgN/10a$, and with the increasing BTNup and PNup up to $6{\sim}7$ and $5{\sim}6\;kgN/10a$, respectively. But yield increment tended to decrease above those levels. These declines resulted from the decreased ripened grain ratio and 1000 grain weight even though spikelet number per unit area increased more at above those N levels. Spikelet number per unit area had the linear relationships with the shoot N uptake until heading, and with yield. Like most yield response curves, yield response in this experiment followed the diminishing return function with BTNup, PNup, and plant N uptake from seeding to harvest. Regardless of the degree of BTNup and PNup, yield had a quadratic relationship ($R^{2}$>0.88) with whole shoot N accumulation until harvest, suggesting that the yield determination was closely related with the whole shoot N uptake until harvest regardless of the differences in seasonal shoot N uptake.