Yield Response to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Nitrogen Nutrition Status of Rice Plant

벼 유수분화기 생장 및 질소영양상태에 따른 수량의 수비질소 반응

  • Kim, Min-Ho (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Fu, Jin-Dong (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University)
  • 김민호 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 부금동 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이변우 (서울대학교 농업생명과학대학 식물생산과학부)
  • Published : 2006.12.31

Abstract

To secure high yield and good quality of rice, plant growth and nitrogen (N) nutrition status should be taken into account for managing panicle N topdressing (PN). This research aimed at investigating the rice yield response to PN under different plant growth and N nutrition status that was conditioned by different rates of basal and tillering N fertilizer (BTN). Stepwise multiple regression (SMR) was used for the analysis of yield response to (i) BTN and PN, and (ii) shoot N content at PIS (BTNup) and shoot N uptake from PIS to harvest (PNup). Rice yield increased significantly as BTN and PN Increased, but there was no significant interaction between BTN and PN. Yield increased almost linearly with the increasing BTN and PN up to $10{\sim}12$ and $6{\sim}7\;kgN/10a$, and with the increasing BTNup and PNup up to $6{\sim}7$ and $5{\sim}6\;kgN/10a$, respectively. But yield increment tended to decrease above those levels. These declines resulted from the decreased ripened grain ratio and 1000 grain weight even though spikelet number per unit area increased more at above those N levels. Spikelet number per unit area had the linear relationships with the shoot N uptake until heading, and with yield. Like most yield response curves, yield response in this experiment followed the diminishing return function with BTNup, PNup, and plant N uptake from seeding to harvest. Regardless of the degree of BTNup and PNup, yield had a quadratic relationship ($R^{2}$>0.88) with whole shoot N accumulation until harvest, suggesting that the yield determination was closely related with the whole shoot N uptake until harvest regardless of the differences in seasonal shoot N uptake.

안정적인 고품질 쌀의 생산을 위한 수비처방을 하기 위해서는 유수형성기 생육상태와 질소영양상태별 질소시비량에 따른 수량반응에 대한 이해가 있어야만 한다. 따라서 본 연구는 기비와 분얼비 시용량을 달리하여 유수분화기에 다양하게 조성된 벼 생육 및 질소영양상태별로 수비 질소 시용량을 달리하였을 때의 수량반응을 질소시비량과 질소흡수량으로 살펴봄으로써 수비처방에 필요한 기초 자료를 얻고자 하였다. 1. 기비 + 분얼비와 수비 시용량 간에는 유의한 상호작용이 없어 수비 시용량에 관계없이 기비 + 분얼비가 증가할수록 그리고 기비 + 분얼비 시용량에 관계없이 수비 시용량이 증가할수록 수량은 증가하는 경향이었다. 2. 영양생장기 시비량(기비 + 분얼비)이 $10{\sim}12\;kgN/10a$까지 생식생장기 시비량(수비)이 6 kgN/10a까지 증가할수록, 그리고 영양생장기 질소흡수량이 $6{\sim}7\;kgN/10a$까지 생식생장기 질소흡수량이 $5{\sim}6\;kgN/10a$까지 수량은 직선적으로 유의하게 증가하는 경향이었으나 그 이상일 경우 수량 증가폭은 점차 줄어들었는데, 이는 등숙률과 천립중이 크게 감소하기 때문이었다. 3. 단위질소흡수량당(kgN/10a) 총영화수($/m^{2}$) 증가는 영양생장기가 약 1900여개, 생식생장기가 $1400{\sim}1500$여개였지만 단위질소흡수량당 수량증가(kg/10a)는 영양생장기가 $30{\sim}50$, 생식생장기가 $40{\sim}80$ 정도였다. 4. 총영화수는 출수기 질소흡수량과 직선적인 관계를 보이고 수량은 시기별 질소흡수량의 다과에 상관없이 이들의 총합인 수확기 질소함량과 2차 곡선관계($R^2$>0.88)를 보였는데, 이는 어느 시기에 질소를 흡수하느냐보다는 생육기간의 총질소흡수량에 의해 수량이 좌우되는 것으로 볼 수 있다. 또한 질소흡수량이 같더라도 총영화수와 수량은 연차간에 차이를 보였다.

Keywords

References

  1. Cui, R. X., M. H. Kim, J. H. Kim, H. S. Nam, and B. W. Lee. 2002. Determination of critical nitrogen concentration and dilution curve for rice growth. Korean Journal of Crop Science. 47 : 127-131
  2. Diker, K. and W. C. Bausch. 2003. Radiometric field measurements of maize for estimating soil and plant nitrogen. Biosystems Engineering 86(4) : 411-420 https://doi.org/10.1016/j.biosystemseng.2003.08.016
  3. Fischer, K. S. 1998. Toward increasing nutrient-use efficiency in rice cropping systems: the next generation of technology. Field Crops Research 56 : 1-6 https://doi.org/10.1016/S0378-4290(97)00139-1
  4. Guindo, D., B. R. Wells, and R. J. Norman. 1994. Cultivar and nitrogen rate influence on nitrogen uptake and partitioning in rice. Soil Sci. Soc. Am. J. 58 : 840-845 https://doi.org/10.2136/sssaj1994.03615995005800030030x
  5. Hansen, P. M., J. R. Jorgensen and A. Thomsen. 2002. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. Journal of Agricultural Science. 139 : 307-318
  6. Hinzman, L. D., M. E. Bauer, and C. S. T. Daughtry. 1986. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment 19 : 47-61 https://doi.org/10.1016/0034-4257(86)90040-4
  7. Hu, C. H. 1973. Evaluation of breeding semidwarf rice by induced mutation and hybridization. Euphytica. 22 : 562-574 https://doi.org/10.1007/BF00036657
  8. Nguyen, T. H., M. H. Kim, and B. W. Lee. 2006a. Response of grain yield and milled-rice protein content to nitrogen topdress timing at panicle initiation stage of rice. Korean J. Crop Sci. 51(1) : 1-13
  9. Nguyen, T. H., M. H. Kim, L. T. Nguyen, and B. W. Lee. 2006b. Response of grain yield and milled-rice protein content to nitrogen rates applied at different growth stages of rice. Korean J. Crop Sci. 51(1) : 14-25
  10. Kropff, M. J., K. G. Cassman, S. Peng, R. B. Matthews, and T. L. Setter. 1994. Quantitative understanding of yield potential. In : Cassman, K. G. (Ed.), Breaking the yield barrier. International Rice Research Institute, Manila, Philippines. pp. 57-60
  11. Ladha, J. K., A. Tirol-Padre, G. C. Punzalan, E. Castillo, U. Singh, and C. K. Reddy. 1998. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy Journal 90 : 33-40 https://doi.org/10.2134/agronj1998.00021962009000010007x
  12. Mills, H. A. and J. B. Jr. Jones. 1979. Nutrient deficiencies and toxicities in plants : nitrogen. Journal of Plant Nutrition 1 : 101-122 https://doi.org/10.1080/01904167909362704
  13. Ntamatungiro, S., R. J. Norman, R. W. McNew, and B. R. Wells. 1999. Comparison of plant measurements for estimating nitrogen accumulation and grain yield by flooded rice. Agronomy Journal 91 : 676-685 https://doi.org/10.2134/agronj1999.914676x
  14. Oh, Y. J. and K. H. Park. 1993. In : Low input sustainable crop production systems in Asia. KSCS (Korean Journal of Crop Science) symposium in Seoul Nat.'l Univ. pp. 125-139
  15. Peng, S., G. S. Khush, and K. G. Cassman. 1994. Evolution of the new plant ideotype for increased yield potential. In : K. G. Cassman (Editor), Breaking the yield barrier. IRRI. pp. 5-20
  16. Perez, C. M., B. O. Juliano, S. P. Liboon, J. M. Alcantara, and K. G. Cassman. 1996. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem. 73 : 556-560
  17. Sasahara, T. and Y. Itoh. 1989. Comparison of the effect of fertilizer application at and after the stage of panicle-base initiation on yield and yield components of semi-dwarf and standard rice cultivars. Field Crops Research. 20 : 157-164 https://doi.org/10.1016/0378-4290(89)90076-2
  18. Schnier, H. F., M. Dingkuhn, S. K. De Datta, K. Mengel, and J. E. Faronilo. 1990. Nitrogen fertilization of direct-seeded flooded vs. transplanted rice : I. Nitrogen uptake, photosynthesis, growth, and yield. Crop Sci. 30 : 1276-1284 https://doi.org/10.2135/cropsci1990.0011183X003000060024x
  19. Sinclair, T. R. and R. C. Muchow. 1995. Effect of nitrogen supply on maize yield : I. Modeling physiological responses. Agronomy J. 87 : 632-641 https://doi.org/10.2134/agronj1995.00021962008700040005x
  20. Ying, J., S. Peng, Q. He, H. Yang, C. Yang, R. M. Visperas, and K. G. Cassman. 1998. Comparison of high-yield rice in tropical and subtropical environments : I. Determinants of grain and dry matter yields. Field Crops Research 57 : 71-84 https://doi.org/10.1016/S0378-4290(98)00077-X
  21. 김재현, 한희석, 양운호, 김제규, 이문희. 1999. 평야지 벼 다수확 재배기술 연구. 농촌진흥청 시험연구보고서(수도편). pp. 450-459
  22. 우메다 미키오, 이충근.2000 일본에 있어서 정밀농업 연구(제1회) : 질소시비량 산출모델과 포장지도의 작성에 관한 연구. 한국농업기계학회지 25 : 421-427
  23. 조동삼 외 14인 공저. 1995. 벼의 생리와 생태. 향문사