• Title/Summary/Keyword: Nitrite oxidizer

Search Result 16, Processing Time 0.021 seconds

Community structure analysis of nitrifying biofilms by 16S rRNA targeted probe and fluorescence in situ hybridization (FISH)

  • Han, Dong-U;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.282-285
    • /
    • 2001
  • The microbial community structure and in situ spatial distribution of ammonia oxidizing and nitrite oxidizing bacteria in nitrifying biofilm of an upflow biological aerated filter system were investigated. The reactor had been continuously operated under high free ammonia concentration and low DO concentration for nitrite accumulation more than 2 years before the experiment. Fluorescence in situ hybridization

  • PDF

Biofilm airlift 반응기를 이용한 선택적 질산화의 연구

  • Yun, Ho-Jun;Jang, Jae-Seon;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • A biofilm airlift reactor filled with biomass-covered carriers (sand) were used to remove ammonium by selective nitrification (ammonium to nitrite). The effects of experimental conditions (ammonium load, pH, dissolved oxygen) on nitrification and nitrite accumulation were investigated. The reactor showed more than 90% nitrification efficiencies at 2.5 kg $NH_4\;^+-N/m^3/d$ and $NO_2\;^--N$ could be accumulated between 75% and 90% in the effluent. It is likely that nitratation (nitrite oxidizer) was inhibited by low dissolved oxygen concentration while nitritation (ammonium oxidizer) was kept stable.

  • PDF

Effect of Temperature and FA Concentration on the Conversion of Ammonium to Nitrite (온도와 FA 농도가 암모늄 이온의 아질산 전환에 미치는 영향)

  • Kim, Jung Hoon;Song, Young Chae;Park, Hung Suck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.427-432
    • /
    • 2006
  • The effects of free ammonia (FA) concentration and temperature on nitrite accumulation were studied. To estimate the most effective ammonium oxidation and nitrite build-up condition, nitrification tests were conducted in batch conditions at various FA concentrations, and at different ammonium concentration and temperature. The activation energies of ammonium oxidizer were 81.7 KJ/mol below $20^{\circ}C$, and 32.5 KJ/mol over $20^{\circ}C$, while that of nitrite oxidizer was 35.5 KJ/mol irrespective of temperature variations. The results of nitrification tests conducted at different FA concentrations and temperatures showed that temperature strongly affects nitrite accumulation, while effects due to FA concentrations were found negligible.

Effects of Environmental Factors on Nitrite Accumulation in a Strong Nitrogen Removal System (고농도 질소폐수 처리 공정에서 환경인자가 아질산염 축적에 미치는 영향)

  • Park, Noh-Back;Choi, Woo-Yung;Yoon, Ae-Hwa;Jun, Hang-Bae;Park, Sang-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • The high concentration of N in the wastewater from livestock farming generally renders the efficiency of the wastewater treatment. Therefore, removal of N in livestock wastewater is crucial for successful treatment. The current study was conducted to investigate the optimum conditions for partial nitrification under anaerobic condition following nitritation in TPAD-BNR(two-phase anaerobic digestion-biological nitrogen removal) operating system. Sequential operating test to stimulate partial nitrification in reactor showed that partial nitrification occurred at a ratio of 1.24 in $NO_2{^-}$-N:$NH_4{^+}$-N. With this result, a wide range of factors affecting stable nitritation were examined through regression analysis. In the livestock wastewater treatment procedure, the hydraulic retention time (HRT) and pH range for optimum nitrite accumulation in the reactor were 1-1.5 days and 7-8, respectively. It was appeared that accumulation of $NO_2{^-}$-N in the reactor is due to inhibition of the $NO_2{^-}$-N oxidizer by free ammonia (FA) while the effect of free nitrous acid was minimal. Nitrification was not influenced by DO concentration at a range of 2.0-3.0 mg/L and the difference in the growth rate between $NH_4{^+}$-N oxidizer and $NO_2{^-}$-N oxidizer was dependent on the temperature in the reactor.

Growth Characteristics of Nitrite Oxidizing Bacteria Isolated from Anaerobic Digestion Liquor (혐기소화액에서 분리한 아질산 산화세균의 생장특성)

  • Jang, Hyun-Min;Jang, Jae-Eun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • Two nitrite oxidizing bacteria, NOB1 and NOB2, were isolated from anaerobic digester liquer of food wastewater and analyzed for their growth characteristics and the ability to oxidize nitrite under different temperature, pH, and DO( dissolved oxygen) concentrations. Both of the isolated strains have shown the best growth at pH 7.0 and at $35^{\circ}C$, and also shown higher growth rate with the increasing dissolved oxygen concentrations. As the factors to restrict the growth of these strains, parameters such as pH and DO were found to be effective ones, by increasing (up to 9.0) or decreasing pH (up to 5.0), or lowing DO below 1.0 ppm. Especially, the ability to oxidize nitrite in both strains was about 50% lower in below 1.0 ppm of DO than above of 1.0 ppm. NOB2 was found to be two times greater in both the growth rate and the nitrite-oxidizing ability than NOB1.

The Evaluation of Temperature Effects on Biofilm Nitritation System with Various Organic and Solid Concentrations for High Strength Reject Water Treatment (반류수 처리를 위한 생물막 아질산화공정에서 유기물과 고형물 농도에 따른 온도 영향 평가)

  • Lee, Hansaem;Lee, Sangil;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.769-775
    • /
    • 2011
  • An experimental study of biofilm nitritation system for high-strength ammonium wastewater has been carried out to examine the temperature effect on different organic and solid concentration. Operating temperature varied from $35^{\circ}C$ to $15^{\circ}C$. The influent N concentration of identical three reactors was adjusted to about $300mg\;NH_4-N/L$. A control unit fed with a synthetic wastewater, while the others were fed with reject water which is consisted of the supernatant of both digester and thickener. The results indicated that nitrite accumulation was stable in temperature range of $35^{\circ}C$ to $25^{\circ}C$. However, nitritation was significantly reduced at below $20^{\circ}C$. Free ammonia (FA) and free nitrous acid (FNA) were major inhibitors to the nitrite oxidizer for nitrite accumulation in lower temperature. From the estimation of temperature coefficient (${\Theta}$) of biofilm and suspended nitritation system, biofilm nitritation system could absorb the negative temperature effect compared with suspended nitritation system.

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.

Composting of Garbage by Home Composter for Household Use : Changes in Microbial Flora (가정용 소형 퇴비화 용기를 이용한 부엌쓰레기의 퇴비화 과정중 미생물상 변동)

  • Kim, Yong-Chang;Joe, Keung-Oak;Lee, Yon;Joo, Woo-Hong;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.44-47
    • /
    • 1997
  • The change in microbial flora has been studied through dwelling house composting by the composter with double layer walls. The results are summarized as followes. 1. Mesophilic bacteria increased and decreased mildly, thermophilic bacteria showed a tendency to decrease except for spring, and the number of mesophilic bacteria and thermophilic bacteria had a tendency to increase and decrease simultaneously. 2. The number of mesophilic actinomycetes were increased at the early stage of compositing in winter, mildly decreased in spring and slightly decreased in summer, and the number of thermophilic actinomycetes were decreased at the early stage of composting. 3. The decrease in the number of mesophilic fungi was observed at the middle stage in summer, but the mild increase was observed in spring and winter. The number of thermophilic fungi was generally decreased. 4. Ammonia oxidizer and nitrite oxidizer were observed in this field composting much more than in the other composting experiments.

  • PDF

Analysis on the distribution of nitrogen and phosphorus removing microorganisms and nitrifying activity in a trickling filter (살수여상에서의 질소, 인 제거 미생물 분포 및 질산화 활성 조사)

  • Kim, Dong-Jin;Yoo, Ik-Keun;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.691-698
    • /
    • 2009
  • Trickling filter has been extensively studied for the domestic wastewater treatment especially for the small scale plants in rural area. The performance of the trickling filter depends on the microbial community and their activity in the biofilms on the media. Nitrification. denitrification, and phosphorus removal of the trickling filter from the wastewater depend on the activity and the amount of the specific microorganisms responsible for the metabolism. For the estimation of the performance of a trickling filter, batch nitrification experiment and fluorescence in situ hybridization (FISH) were carried out to measure the microbial activity and its distribution on the media of the trickling filter. Batch nitrification activity measurement showed that the top part of the 1st stage trickling filter had the highest nitrification activity and the maximum activity was 0.002 g $NH_4$-N/g MLVSS${\cdot}$h. It is thought that higher substrate (ammonia) concentration yields more nitrifying bacteria in the biofilms. The dominant ammonia oxidizer and nitrite oxidizer in the biofilm were Nitrosomonas species and genus Nitrospira, respectively, by FISH analysis. Less denitrifiers were found than nitrifiers in the biofilm by the probe Rrp1088 which specifically binds to Rhodobacter, Rhodovulum, Roseobacter, and Paracoccus. Phosphorus accumulating bacteria were mostly found at the surface of the biofilm by probe Rc988 and PAO651 which specifically binds to Rhodocyclus group and their biomass was less than that of nitrifiers.

Rapid Detection of Ammonia-oxidizing Bacteria in Activated Sludge Based on 16S-rRNA Gene by Using PCR and Fluorometry

  • Hikuma, Motohiko;Nakajima, Masanori;Hirai, Toshiaki;Matsuoka, Hiroshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.323-326
    • /
    • 2002
  • To detect whole ammonia-oxidizing bacteria in the activated sludge, group-specific primers targeting the 16S-rRNA gene of ammonia-oxidizing bacteria were used. The electrophoresis pattern of the PCR products seemed to produce a single band of approximately 1.0 k bp for the bacteria in activated sludge and Nitrosomonas europaea. No band was observed for nitrite-oxidizer Nitrobacter winogradskyi and heterotrophs such as Pseudomonas putida. Then direct measurement of the PCR product was made by fluorometry using the reagent Hoechist 33258, so that the fluorescent intensity was in proportional to the cell number of the sample up to 240. Total time required for the test was about 4 h including DNA extraction. The DNA fragments produced were cloned and their sequences showed high similarity to those of Nitrosomonas spp. This study showed the feasibility to detect ammonia-oxidizing bacteria and to esti-mate their population rapidly for the control of the nitrogen elimination process.