• Title/Summary/Keyword: Nitric oxide inhibitor

Search Result 443, Processing Time 0.024 seconds

Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

  • Lee, Dong-Hyup;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2009
  • Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-$l\beta$ plus TNF-$\alpha$), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-l induction in rat VSMCs. Aprotinin induced HO-l protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-l inhibitor, tin protoporphyrin IX (SnPPIX). HO-l is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties.

Vasorelaxant effect of fluoxetine in isolated rat aorta (흰쥐 대동맥에서 fluoxetine의 혈관 이완 효과)

  • Kim, Shang-Jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.515-522
    • /
    • 2004
  • The vasorelaxant effect of serotonin reuptake inhibitor fluoxetine was investigated in rat isolated thoracic aorta. Fluoxetine induced a concentration-dependent relaxation in aorta precontracted with phenylephrine (PE) and KCl. These relaxations were suppressed by removal of the endothelium (-E) or pretreatment of nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-Larginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue (MB) and 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), and $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings. However, fluoxetine-induced relaxations were not suppressed by pretreatment of $K^{+}$ channel blockers, tetrabutylammonium and glibenclamide, in PE-precontracted endothelium intact (+E) rings. The fluoxetine-induced relaxations were not suppressed by removal of the endothelium or pretreatment of LNNA and MB in KCl-precontracted +E rings. Also, fluoxetine inhibited PE-induced sustained contraction in +E rings. These inhibitory effects of fluoxetine on contractions could be reversed by removal of the endothelium or pretreatment of L-NNA, L-NAME, MB, ODQ, nifedipine and verapamil, but not by pretreatment of etrabutylammonium and glibenclamide. These findings suggest that the vasorelaxant effect of fluoxetine is modulated by intracellular $Ca^{2+}$ with an involvement of endothelial NO-cGMP pathway and also may be related to the inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates

  • Lee, Eun-Jeoung;Shin, Sung-Hwa;Hyun, Sung-Hee;Chun, Jae-Sun;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.95-106
    • /
    • 2011
  • The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues. Nitric oxide (NO) as a gaseous signal mediator shows a variety of important biological effects. In many instances, NO has been shown to exhibit its activities via a protein S-nitrosylation mechanism in order to regulate its protein functions. With functional assays via site-directed mutagenesis, we demonstrate herein that NO induces the S-nitrosylation of TRPV4 $Ca^{2+}$ channel on the $Cys^{853}$ residue, and the S-nitrosylation of $Cys^{853}$ reduced its channel sensitivity to 4-${\alpha}$ phorbol 12,13-didecanoate and the interaction between TRPV4 and calmodulin. A patch clamp experiment and $Ca^{2+}$ image analysis show that the S-nitrosylation of $Cys^{853}$ modulates the TRPV4 channel as an inhibitor. Thus, our data suggest a novel regulatory mechanism of TRPV4 via NO-mediated S-nitrosylation on its $Cys^{853}$ residue.

Antioxidant Effect of Captopril and Enalapril on Reactive Oxygen Species-Induced Endothelial Dysfunction in the Rabbit Abdominal Aorta

  • Kim, Ji Hoon;Kim, Hyuck;Kim, Young Hak;Chung, Won-Sang;Suh, Jung Kook;Kim, Sung Jin
    • Journal of Chest Surgery
    • /
    • v.46 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • Background: Reactive oxygen species (ROS) are known to be related to cardiovascular diseases. Many studies have demonstrated that angiotensin-converting enzyme inhibitors have beneficial effects against ROS. We investigated the antioxidant effect of captopril and enalapril in nitric oxide mediated vascular endothelium-dependent relaxations. Materials and Methods: Isolated rabbit abdominal aorta ring segments were exposed to ROS by electrolysis of the organ bath medium (Krebs-Henseleit solution) after pretreatment with various concentrations (range, $10^{-5}$ to $3{\times}10^{-4}$ M) of captopril and enalapril. Before and after electrolysis, the endothelial function was measured by preconstricting the vessels with norepinephrine ($10^{-6}$ M) followed by the cumulative addition of acetylcholine (range, $3{\times}10^{-8}$ to $10^{-6}$ M). The relevance of the superoxide anion and hydrogen peroxide scavenging effect of captopril and enalapril was investigated using additional pretreatments of diethyldithiocarbamate (DETCA, 0.5 mM), an inhibitor of Cu/Zn superoxide dismutase, and 3-amino-1,2,4-triazole (3AT, 50 mM), an inhibitor of catalase. Results: Both captopril and enalapril preserved vascular endothelium-dependent relaxation after exposure to ROS in a dose-dependent manner (p<0.0001). Pretreatment with DETCA attenuated the antioxidant effect of captopril and enalapril (p<0.0001), but pretreatment with 3AT did not have an effect. Conclusion: Both captopril and enalapril protect endothelium against ROS in a dose-dependent fashion in isolated rabbit abdominal aortas. This protective effect is related to superoxide anion scavenging.

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

EFFECTS OF GINSENG SAPONIN ON ENDOTHELIUM - DEPENDENT VASCULAR RELAXATION IN RAT AORTA AND HYPERCHOLESTEROLEMIC RABBIT AORTA

  • Kim N.D.;Kang S.Y.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.40-48
    • /
    • 1993
  • Intravenous administration of saponin extracted from the root of Panax ginseng lowered the blood pressure dose-dependently (10-200 mg/kg, B.W) in anesthetized rats. Therefore, experiments were designed to study the hypothesis that the lowering of blood pressure is associated with the release of endothelium-derived relaxing factor and the accumulation of guanosine 3, 5-cyclic monophosphate (cGMP). Rings of thoracic aorta with and without endothelium were suspended for the measurement of isometric tension in organ chamber and the tissue content of cGMP was measured by radioimmunoassay. All experiments were performed in the presence of $indomethacin(10^{-5}M).$ Ginseng saponin $(10^{-5}-3{\times}10^{-6}g/ml)$ relaxed contractions induced by phenylephrine $10^{-6}M)$ in the aorta with endothelium but not in that without endothelium. Treatment of aortic rings with $N^G$ monomethyl-L-arginine (L-NMMA, $10^{-4}M$ for 30 min), a competitive inhibitor of nitric oxide synthase, and methylene blue $(MB,\;3{\times}10^{-7}M$ for 30 min). an inhibitor of soluble guanylate cyclase, diminished the relaxation induced by Ginseng saponin. Ginseng saponin $10^{-4}g/ml$ for 2 min) increased the accumulation of cGMP in rings with endothelium. L-NMMA and MB inhibited the accumulation of cGMP induced by Ginseng saponin. These data suggest that vascular relaxations induced by Ginseng saponin are mediated by release of endothelium-derived relaxing factor and the accumulation of cGMP. The effect of Ginseng saponin on endothelial function in hypercholesterolemic rabbits was examined. In hypercholesterolemic rabbits fed with $2\%$ cholesterol for 8 weeks, relaxation of aortic rings to acetylcholine was impaired. The impaired relaxations of aortic rings in hypercholesterolemic rabbits were improved by dietary supplementation of Ginseng saponin, probably because of an improved release of endothelium - derived relaxing factor.

  • PDF

Protective Effect of Vascular Endothelial Growth Factor on Focal Cerebral Ischemia in Rats

  • Noh, Yong-Rae;Lee, Won-Suk;Choi, Chang-Hwa
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.355-363
    • /
    • 2005
  • This study aimed to investigate the cerebroprotective effect of vascular endothelial growth factor (VEGF) on permanent focal cerebral ischemia in Sprague-Dawley rats. Right middle cerebral artery (MCA) was occluded for 6 and 24 hours by an intraluminal monofilament technique. An open cranial window was made on the right parietal bone for determination of continuous changes in regional cerebral blood flow (rCBF) by laser-Doppler flowmetry. The infarct size was morphometrically determined using the 2,3,5-triphenyltetrazolium chloride technique. Brain edema was determined by measuring brain water content. In normal rats, rCBF was significantly increased by intravenous infusion of VEGF for 10 minutes. The VEGF-induced increase in rCBF was significantly inhibited by pretreatment with suramin, a heparin-binding growth factor inhibitor as well as $N^{\omega}-nitro-L-arginine$, a nitric oxide synthase inhibitor. In focal cerebral ischemic rats, the amplitude of decrease in rCBF during ischemic period was significantly less in VEGF-treated group, compared with that in vehicle-treated group. The cerebral infarct size was reduced by VEGF in a dose-dependent manner. The brain edema formation was dose-dependently reduced by VEGF in 24-hour MCA occlusion group but not in 6-hour MCA occlusion group. It is suggested that VEGF not only improves the rCBF during cerebral ischemic period but also reduces the brain edema formation, and thereby exert a protective effect on focal cerebral ischemia in rats.

  • PDF

Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

  • Jiao, Han-Yi;Kim, Dong Hyun;Ki, Jung Suk;Ryu, Kwon Ho;Choi, Seok;Jun, Jae Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • Lubiprostone is a chloride ($Cl^-$) channel activator derived from prostaglandin $E_1$ and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid $EP_1$, $EP_2$, $EP_3$, and $EP_4$ antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [$K^+$] channel blocker) and apamin (a calcium [$Ca^{2+}$]-dependent $K^+$ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive $K^+$ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive $K^+$ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive $K^+$ channel through a prostanoid EP receptor-independent mechanism.

Studies on Cardio-suppressant, Vasodilator and Tracheal Relaxant Effects of Sarcococca saligna

  • Ghayur, Muhammad Nabeel;Gilani, Anwarul Hassan
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.990-997
    • /
    • 2006
  • Sarcococca saligna is a shrub that is traditionally used for its medicinal properties in Pakistan. In this study we report the cardio-suppressant, vasodilator and tracheal relaxant activities of the aqueous-methanolic extract (Ss.Cr) of the plant. Ss.Cr, that tested positive for the presence of saponins, flavonoids, tannins, phenols, and alkaloids, exhibited a dose-dependent (0.3-5 mg/mL) negative inotropic and chronotropic effect on the isolated guinea-pig atrium which was resistant to atropine ($1\;{\mu}M$) and aminophylline ($10\;{\mu}M$) pretreatment. In rabbit thoracic aorta, Ss.Cr dose-dependently (0.1-3 mg/mL) relaxed the high $K^{+}$ (80 mM) and phenylephrine ($PE,\;1\;{\mu}M$)-induced contractions, indicating a possible $Ca^{++}$ channel blocking (CCB) effect. When tested against PE ($1\;{\mu}M$) control peaks in normal $Ca^{++}\;and\;Ca^{++}$-free Kreb's solution, Ss.Cr exhibited dose-dependent (0.1-3 mg/mL) inhibition, being more potent in relaxing the PE responses in $Ca^{++}$-free Kreb's solution, thus indicating specific blockade of $Ca^{++}$ release from the intracellular stores. Ss.Cr also relaxed the agonist-induced contractions in: a) rat aorta irrespective of the presence of endothelium or nitric oxide synthase inhibitor L-NAME and b) rabbit and guinea-pig tracheal strips. The data shows that Ss.Cr possesses possible $Ca^{++}$ channel blocking activity which might be responsible for its observed cardio-suppressant, vasodilator and tracheal relaxant effects though more tests are required to confirm this $Ca^{++}$ channel blocking effect.