• Title/Summary/Keyword: Nitric oxide inhibitor

Search Result 443, Processing Time 0.032 seconds

Anti-Inflammatory Effect of Ethyl Acetate Fraction Isolated from Undaria pinnatifida on Lipopolysaccharides-Stimulated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 미역(Undaria pinnatifida) Ethyl Acetate 분획물의 항염증 효과)

  • Choi, Min-Woo;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.384-392
    • /
    • 2013
  • An ethanolic extract of Undaria pinnatifida was fractionated using several solvents. Of the fractions, the ethyl acetate fraction had the greatest inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophage cells. Using this fraction (U. pinnatifida ethyl acetate extract, UPE), we investigated the molecular mechanism underlying its inhibitory effect on LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to $100{\mu}g/mL$ UPE significantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression, in a dose-dependent manner. Similarly, UPE treatment markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), while it strongly suppressed the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) by preventing proteolytic degradation of inhibitor of nuclear factor ${\kappa}B$ $(I{\kappa}B)-{\alpha}$. Moreover, UPE treatment significantly reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated cells. These results indicate that UPE contains anti-inflammatory compounds and suggest that it might be used as a functional food material that assists in prevention of inflammatory diseases.

Effect of UV Irradiation and Rebamipide on the Blood Flow and Viability of Rabbit Skin Flap

  • Suh, Eung-Joo;Choi, Hyoung-Chul;Sohn, Uy-Dong;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.581-589
    • /
    • 1997
  • This study was undertaken to examine the effects of ultraviolet light (UVL) and rebamipide on the cutaneous blood flow and tissue survival on rabbit skin flap. In a random bipedicle flap, Laser Doppler Flowmetry (LDF) was employed to measure the blood flow of flap (BFF). Wound Margin Strength (WMS) measured by force transducer and Light microscophy were used for evaluation of tissue viability. Single exposure to UVL increased the BFF gradually for more than 15 hours, and decreased the vasoconstrictor effect of intravenous phenylephrine. The UVL-induced increase in BFF regressed after 18 hours of irradiation, and this regression was tended to be enhanced by intradermal injection of L-NAME, a nitric oxide synthase (NOS) inhibitor, but the regression was significantly reversed by acetylcholine, an endothelial constitutive NOS (cNOS) activator and L-arginine, an NO precusor. Rebamipide, a novel antiulcer agent known to scavenge the hydroxyl radical, abruptly reversed the spontaneous regression of the UVL- induced increase in BFF by the same manner as L-arginine. In ischemic skin flap, rebamipide increased the BFF abruptly by the same manner as sodium nitroprusside (SNP), an NO doner, while N-acetylcystein (NAC), a free radical scavenger, gradually increase the BFF. The rebamipide-induced increase in BFF was sustained at the level of the SNP-induced increase in BFF during the late period of experiment. Rebamipide increased the WMS of skin flaps and prevented the tissue necrosis in comparison with L-NAME. Based on these results, it is concluded that in rabbit skin, UVL irradiation increases the BFF by NO release, and rebamipide exerts a protective effect on the viability of ischemic skin flaps by either or both the increase in BFF by NO release and free radical scavenger effect.

  • PDF

Effect of OQ21 and Melatonin on Lipopolysaccharide-Induced Oxidative Stress in Rat Brain (흰쥐 뇌에서의 Lipopolysaccharide-유도 산화적 스트레스에 대한 OQ21과 Melatonin의 작용)

  • Bae Mee Kyung;Choi Shinkyu;Ko Moon-Jeong;Ha Hun-Joo;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.347-354
    • /
    • 2005
  • Lipopolysaccharide (LPS) induces synthesis of several inflammatory cytokines and nitric oxide (NO). NO in brain is involved not only in the regulation of important metabolic pathways via intracellular cyclic GMP-dependent path­ways, but also in neurotoxic damage by reacting with superoxide ion leading to form peroxynitrite radical. Oxidative stress has suggested to be related to the inhibition of NO synthase/cyclic GMP pathway. OQ21 is a new fluorinated quinone compound that is recently known to have inhibitory effects on both NO synthase (NOS) and guanylyl cyclase (GC). In this study, we examined effects of OQ21, other known NOS or GC inhibitors, or an antioxidant, melatonin, on the oxidative stress produced by LPS in rat brain. Oxidative stress was observed by using the 2',7'-dichlorofluorescin diacetate to measure intra-cellular reactive oxygen species (ROS) production and by measuring the formation of thiobarbituric acid reactive substances to measure lipid peroxidation. LPS induced significant increase in both ROS produdction and lipid peroxidation in all brain regions tested (striatum, hippocampus and cortex), which were dissected 6hr after intraperitoneal administration of LPS to rats. Direct striatal injection of two NOS inhibitors, N-nitro-L-arginine methyl ester and diphenyleneiodonium, or a GC inhibitor, IH-[1,2,4]oxadiazolo[4,3-a]quinoxaline-l-one, produced no significant ROS increase. However, OQ21 enhanced ROS formation in striatal tissues from LPS-treated rats. Melatonin decreased LPS-induced ROS formation and decreased ROS formation increased by OQ21 in striatum of LPS-treated rats.

Effects of Nitric Oxide on the Induction of Experimental Allergic Orchitis in Guinea Pig

  • An, Jeong Hwan;Kim, In Keun;Kim, Taek Sang;Kwak, Hyun Jeong;Rhew, Hyun Yul;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.108-115
    • /
    • 2004
  • Background: Production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathology of autoimmune disease. It is unknown whether iNOS expression is increased within testes and whether iNOS and NO have essential roles in the pathogenesis of EAO. Methods: EAO was induced in guinea pig testes at 17 days after secondary immunization by administration of crude extract (CE) and purified glycoprotein 1 (GP1) from normal guinea pig testes. iNOS gene expression was assessed by RT-PCR and Northern blot analysis in testes. Localization of iNOS and Mac-1 and the indicator of NO-mediated tissue injury, nitrotyrosine, were detected in the testicular lesion by immunohistochemistry. Results: In control testes, inflammation and iNOS gene expression were not detected, whereas, in CE- and GP1-injected testes, inflammation and marked iNOS gene expression were evident at day 17 after secondary immunization. Immunohistochemistry of Mac-1 showed the colocalization with iNOS protein and nitrotyrosyl proteins in intertubules, suggesting that NO produced by infiltrated macrophages may be involved in inflammatory lesions of intertubules. Intraperitoneal administration of aminoguanidine significantly prevented EAO with reduction of inflammation, iNOS expression and nitrotyrosine formation. Conclusion: These results suggest that NO production by macrophages may be important in the pathogenesis of CE- and GP1-induced EAO. Furthermore, this study demonstrated the therapeutic potential of iNOS inhibitor in the treatment of inflammatory and autoimmune mediated-diseases.

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Restoration of Blood Pressure after Administering Methylene Blue for Vasoplegic Syndrome, which Developed after Open Heart Surgery for Septic Infective Endocarditis -A case report - (폐혈성 감염성 심내막염으로 개심술 후 발생한 Vasoplegic Syndrome에서 메틸렌 블루의 투여 후 혈압회복 - 1예 보고 -)

  • Lee, Sak;Bae, Mi-Kyung;Yi, Gi-Jong;Youn, Young-Nam;Song, Suk-Won;Kim, Do-Kyun
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.305-308
    • /
    • 2007
  • Vasoplegic syndrome occurs in $8{\sim}10%$ of patients following cardiac surgery, and this happens in part because of inducing the inflammatory response. Nitric oxide and guanylate cyclase play an important role in this response, and this is associated with increased morbidity and mortality. For our case, we administered methylene blue (MB), an inhibitor of guanylate cyclase, early after performing cardiopulmonary bypass in a patient with vasoplegic syndrome. The patient recovered immediately after MB administration and maintained an optimal blood pressure without the aid help of any vasopressors.

The Effects of Chelidonium majus on NO and $TNF-{\alpha}$ Production in Macrophages (백굴채가 대식세포의 NO 및 $TNF-{\alpha}$ 생성에 미치는 영향)

  • 김홍준;문석재;김동웅;문구;원경숙;윤준철;김유경;원진희
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.138-147
    • /
    • 2003
  • Objectives : In this study, we investigated the mechanism by which Chelidonium majus (CM) regulates nitric oxide (NO) production. Methods : Using mouse peritoneal macrophages, the mechanism by which CM regulates NO or tumor necrosis $factor-{\alpha}(TNF-{\alpha})$ production was examined. NO release was measured by the Griess method. $TNF-{\alpha}$ production was measured by the ELISA method. The protein extracts were prepared and samples were analyzed for the inducible NOS(iNOS) expression and nuclear factor kappa $B(NF-{\kappa}B)$ activation by Western blotting. Results : When CM was used in combination with recombinant $interferon-{\gamma}{\;}(rIFN-{\gamma})$, there was a marked cooperative induction of NO production. CM had an effect on NO production by itself. The expression of the iNOS gene was increased in $rIFN-{\gamma}$ plus CM-stimulated peritoneal macrophages and almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of $NF-{\kappa}B$. The $NF-{\kappa}B$ activation was increased in rIFN-{\gamma} plus CM-induced peritoneal macrophages. The increased production of NO from $rIFN-{\gamma}$ plus CM-stimulated peritoneal rnacrophages was decreased by the treatment with $N^{G}-monomethyl-{_L}-arginine{\;}(N^{G}MMA){\;}N^{\alpha}-Tosyl-Phe$ chloromethyl ketone (TPCK) , and was almost completely inhibited by pre-treatment with PDTC. Furthermore, treatment with CM alone or rIFN-{\gamma} plus CM in peritoneal macrophages caused a significant increase in $TNF-{\alpha}$ production. PDTC decreased CM-induced $TNF-{\alpha}$ production significantly. After CM treatment in HT-29 or AGS cells, cell viability decreased. Conclusions : These findings demonstrate that CM increases the production of NO and $TNF-{\alpha}{\;}by{\;}rIFN-{\gamma}-primed$ macrophages and suggest that NF-B plays a critical role in mediating these effects of CM.

  • PDF

Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of $NF{\kappa}B$ and MAPKs activation in macrophages

  • Sung, Jeehye;Sung, Misun;Kim, Younghwa;Ham, Hyeonmi;Jeong, Heon-Sang;Lee, Junsoo
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.352-359
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS: The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS: ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of $NF{\kappa}B$. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS: These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L.

Ionomycin Recovers Taurine Transporter Activity in Cyclosporin A Treated macrophages

  • Kim, Ha-Won;Lee, Eun-Jin;Kim, Won-Bae;Hyun, Jin -Won;Kim, Byung-Kak
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.265-269
    • /
    • 1999
  • Taurine is a major $\beta$-amino acid in various tissues. Taurine transporter (TAUT) is responsible for the transportation of taurine in the cell. The transporter is affected by various stimuli to maintain its cell volume. Macrophage cell volume varies in its activated states. In our experiment, it was found that the murine macrophage cell line, RAW264.7, expressed TAUT protein in its membrane. Its transportation activities could be blocked by a $\beta$-amino acid such as $\beta$-alanine, but not by $\alpha$-amino acids in this cell line. When assessed in RAW264.7 under the influence of immunosuppressive reagents, the activity of the TAUT was decreased by the treatment of rapamycin (RM) or cyclosporin A (CsA). However when ionomycin (IM) was added to this system, TAUT activity was recovered only in CsA-treated cells in a concentration-dependent manner. In order to inhibit the voltage gated {TEX}$Ca^{+2}${/TEX} channel, calmidazolium was added to the RAW264.7 cell line. Treatment of the cell with calmidazolium completely blocked TAUT. Furthermore, addition of IM to this system recovered the activity of TAUT again. When we added phorbol myristate acetate (PMA) to the cell line, secretion of nitric oxide (NO) was increased 4-fold and the TAUT activity was decreased 5-fold. However, the addition of N-nitro L-arginine methyl ester (L-NAME), an inducible NO synthase (iNOS) inhibitor, to the PMA-treated cells, resulted in the recovery of TAUT activity. These results showed that the activity of TAUT was sensitive to the intracellular concentrations of both {TEX}$Ca^{+2}${/TEX} and NO.

  • PDF

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Ko, Wonmin;Sohn, Jae Hak;Kim, Youn-Chul;Oh, Hyuncheol
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.240-247
    • /
    • 2015
  • Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.