• Title/Summary/Keyword: Nitric acid leaching

Search Result 27, Processing Time 0.023 seconds

Nitric acid leaching of electronic scraps and the removal of free nitric acid from the leaching solution for the recovery of copper and tin. (전자(電子)스크랩에서 구리 및 주석의 회수(回收)를 위한 질산(窒酸) 침출(浸出) 및 침출액(浸出液)에서 유리질산(遊離窒酸) 제거(除去) 연구(硏究))

  • Ahn, Jae-Woo;Seo, Jae-Seong
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.44-51
    • /
    • 2009
  • Fundamental study has been made on the recovery of copper from the electronic scrap by hydrometallurgical process. Nitric acid was used as a leaching agent to dissolve the metals such as Cu, Sn, Pb, Fe etc. from the crushed electronic scraps. TBP was employed to extract nitric acid from the strong nitric acid leaching solutions and to reclaim nitric acid. From the experimental results, Cu was effectively leached by 3.0-4.0 M nitric acid. And 95% of nitric acid in the leaching solution was extracted by 60% TBP, and 98% of nitric acid was stripped from the loaded organic phase by distilled water and it was possible to reuse as a leaching agent.

Gold Recovery from Geumsan Concentrate Using Microwave-nitric Acid Leaching and Lead-fire Assay (마이크로웨이브-질산용출과 납-시금법을 이용한 금산정광으로부터 금 회수)

  • Lee, Jong-Ju;On, Hyun-Sung;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.113-126
    • /
    • 2019
  • This study aimed to effectively dissolve sulfide minerals through microwave-nitric acid leaching of invisible gold concentrate and then recover gold from the solid-residue with fire assay. For the purposes, this study conducted microwave-nitric acid leaching experiments to examine nitric acid concentration, time of microwave leaching, and sample addition effect. As results of the experiments, this study discovered that the weight loss rate of solid-residue increased as nitric acid concentration and microwave leaching time increased while weight loss rate decreased as sample addition increased. In an XRD analysis with solid-residue, it was discovered that pyrite completely disappeared when the nitric acid concentrate was 6 M and the microwave leaching time was 18 minutes. When a fire assay was carried out with solid-residue, gold particles with more content were recovered as nitric acid concentration and microwave leaching time increased whereas gold particles with more gold content were recovered as the sample addition decreased.

The Dissolution Efficiency of Gold Concentrate with Microwave-nitric Acid Leaching and the Recovery of Invisible Gold Using the Filter Paper (마이크로웨이브-질산용출에 의한 금 정광의 용해효율과 여과지를 이용한 비-가시성 금 회수)

  • Lee, Jong-Ju;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.595-604
    • /
    • 2019
  • The purpose of this study was simply to obtain gold through a microwave-nitric acid experiment of invisible gold concentrate with the use of filter paper. For the purpose, this study conducted a microwave-nitric acid leaching experiment and examined nitric acid concentration. As a result of the experiment, this study discovered that Fe, Te and Ag were completely leached in the leaching solution whereas Au was not determined in all of the nitric acid conditions. The leaching solution was filtered with three filter papers and then these filter papers were analyzed with SEM/EDS. As a result of the EDS analysis, Au was detected in all of the surface and cross-section of the 1st, 2nd and 3rd filter papers. As the three filter papers containing solid-residue were analysed in the lead-fire assay, gold particles were found in all of the nitric acid conditions. In the lead-fire assay, maximum gold(452.50g/t) was recovered when nitric acid concentration was 6M and microwave leaching time was 12mins.

The Effective Recovery of Gold from the Invisible Gold Concentrate Using Microwave-nitric Acid Leaching Method (마이크로웨이브-질산침출방법에 의한 비가시성 금의 회수율 향상)

  • Lee, Jong-Ju;Myung, Eun-Ji;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.185-200
    • /
    • 2019
  • This study aimed to liberate gold from invisible gold concentrate (Au = 1,840.00 g/t) through microwave nitric acid leaching experiments. For the purpose, this study conducted microwave-nitric acid leaching experiments and examined nitric acid concentration effect, microwave leaching time effect and sample addition effect. The results of the experiments were as follows: Au (gold) contents were not detected in all of the microwave leaching conditions. In the insoluble-residue, weight loss rate tended to decrease as the nitric acid concentration, microwave leaching time and sample addition increased. In an XRD analysis with solid-residue, it was suggested that gypsum and anglesite were formed due to dissolution of calcite and galena by nitric acid solution. When a fire assay was carried out with insoluble-residue, it was discovered that gold contents of the solid-residue were 1.3 (Au = 2,464.70 g/t) and 28.8 (52,952.80 g/t) times more than those of concentrate. But in the gold contents recovered, a severe gold nugget effect appeared. It is expected that the gold nugget effect will decrease if a sampling method of concentrate is improved in the microwave-nitric acid leaching experiments and filtering paper with smaller pore size is used for leaching solution and burned filter paper is used for sampling in lead-fire assay.

A Study on the Removal of Penalty Elements and the Improvement of Gold Contents from Gold Concentrate Using Microwave-nitric Acid Leaching (마이크로웨이브-질산침출을 이용한 금 정광으로부터 페널티 원소 제거 및 금 품위 향상 연구)

  • Kim, Hyun Soo;Oyunbileg, Purev;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • This study used microwave-nitric acid leaching with the aim of removing penalty elements such as As and Bi. Moreover, enhanced gold content from the gold concentrate sample. The leaching conditions were changed: leaching time, nitric acid concentrations and solid-liquid ratio; In order to improve the removal of penalty elements. As a result of the experiment; sample weight loss rate, As and Bi removal rate and gold content in the solid-residues have been increased when the nitric acid concentration and leaching time were increased while the solid-liquid ratio was decreased. The leaching conditions for the maximum As and Bi removal and gold content were: leaching with a 6.0 M nitric acid solution doing 5 min. At these, the solid-residue sample weight loss was 87 %. As removal rate was 98.23 % and Bi was completely removed (100 %). Furthermore, gold content increased from 81.36 g/t to 487.32 g/t. The XRD of the solid residue showed that pyrite disappeared as the nitric acid concentration was increased, whereas sulfur peaks was increased, too.

Leaching of copper and silver from ground mobile phone printed circuit boards using nitric acid (핸드폰 기판(基板)으로부터 구리와 은의 질산(窒酸) 침출(浸出) 연구(硏究))

  • Le, Long Hoang;Yoo, Kyong-Keun;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.48-55
    • /
    • 2008
  • Leaching of copper and silver from mobile phone PCBs(printed circuit boards) with nitric acid was performed to investigate the effects of nitric acid concentrations, leaching temperatures, agitation speeds, and pulp densities on the leaching behaviors of Cu and Ag. The leaching rate considerably increased with increasing acid concentration and temperature. The leaching ratios of Cu and Ag were found to be 96.4% and 96.5%, respectively, under the optimum condition; at $80^{\circ}C$ with 2mol/L $HNO_3$ and 120g/L in pulp density within 39minutes. The kinetic parameters were determined based on the shrinking core model with reaction control corresponding to small particles. The activation energies for the leaching of copper and silver were found to be 45.5kJ/mol and 60.5kJ/mol at $35{\sim}80^{\circ}C$ with 2mol/L $HNO_3$, respectively.

The Selection Effect of Native Gold and Magnetite by Microwave-nitric Acid Leaching and Magnetic/hydro Separation (마이크로웨이브-질산용출과자력/수력선별에의한자연금및자철석의선별효과)

  • Lee, Jong-Ju;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.183-196
    • /
    • 2020
  • This study aimed to recover native gold from the concentrate using microwave-nitric acid leaching and magnetic/hydro separation experiments. The insoluble-residue was filtered from leaching solution through microwave-nitric acid leaching experiment. As a result of the atomic absorption spectrometer(AAS) analysis of the filtered leaching solution, it was discovered that Au content was not eluted at all and it was observed from the back scattered electron(BSE) image that native gold was liberated in the insoluble-residue. When magnetic/hydro separation experiments were applied for the insoluble-residue, magnetic and non magnetic minerals were separtated from insoluble-residue. Magnetite was recovered from the magnetic minerals and as a result of applying the hydro separation experiment again for the non-magnetic mineral, native gold was recovered. The native gold was identified through the X-ray diffraction(XRD) analysis and BSE image.

Characteristics of Microwave Leaching for the Removal of Bi, As from the Sulfide Mineral Concentrate (황화광물정광으로부터 Bi, As 제거를 위한 마이크로웨이브 용출 특성)

  • On, Hyun-Sung;Togtokhmaa, B.;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.137-147
    • /
    • 2018
  • The aim of this study was to leach penalty elements, such as Bi and As, effectively through microwave leaching of a gold concentrate sample containing penalty elements with nitric acid solution. For this purpose, the time effect of microwave leaching, nitric acid concentration effect, and sample addition effect in a microwave were examined. The experiment, demonstrated that the leaching rate of penalty elements increased as microwave leaching time and nitric acid concentration increased and concentration addition decreased. When a microwave heating experiment was carried out on the concentrate and ore minerals, Bi was removed by as much as 90%, and the phase of arsenopyrite was transformed in the order of arsenopyrite (FeAsS), pyrrhotite (FeS), and hematite ($Fe_2O_3$). When the X-ray diffraction (XRD) analysis was carried out with solid residue, elemental sulfur and anglesite were identified. The intensity of the XRD peaks of elemental sulfur and anglesite increased, and the peaks were sharper when the microwave leaching time was 12 min instead of 1 min, the nitric acid concentration was 4 M in rather than 0.5 M, and the concentration addition was 30 g rather than 5 g. This was probably because more elemental sulfur and anglesite were generated in the leaching solution as the leaching efficiency increased. Bi can be leached as valuable elements in the leaching solution through microwave leaching processes while they are released to the environment through a microwave heating processes.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

A Study on Improvement of Valuable Metals Leaching and Distribution Characteristics on Waste PCBs(Printed Circuit Boards) by Using Pulverization Process (폐 PCBs의 미분쇄 공정 적용에 따른 유가금속 분포 특성 및 금속 침출 향상에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2015
  • The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.