• Title/Summary/Keyword: Nitration

Search Result 128, Processing Time 0.022 seconds

Peroxynitrite Inactivates Carbonic Anhydrase II by Releasing Active Site Zinc Ion

  • Kim, Young-Mi;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.711-714
    • /
    • 2004
  • Peroxynitrite enters erythrocytes through band 3 anion exchanger and oxidizes cytosolic proteins therein. As a protein associated with band 3, carbonic anhydrase II may suffer from peroxynitrite-induced oxidative damages. Esterase activity of carbonic anhydrase II decreased as the concentration of peroxynitrite increased. Neither hydrogen peroxide nor hypochlorite affected the enzyme activity. Inactivation of the enzyme was in parallel with the release of zinc ion, which is a component of the enzyme's active site. SDS-PAGE of peroxynitrite-treated samples showed no indication of fragmentation but non-denaturing PAGE exhibited new bands with lower positive charges. Western analysis demonstrated that nitration of tyrosine residues increased with the peroxynitrite concentration but the sites of nitration could not be determined. Instead MALDI-TOF analysis identified tryptophan-245 as a site of nitration. Such modification of tryptophan residues is responsible for the decrease in tryptophan fluorescence. These results demonstrate that peroxynitrite nitrates tyrosine and tryptophan residues of carbonic anhydrase II without causing fragmentation or dimerization. The peroxynitrite-induced inactivation of the enzyme is primarily due to the release of zinc ion in the enzyme's active site.

Nitrated Proteome in Human Embryonic Stem Cells

  • Kang, Jeong Won;Hwang, Daehee;Kim, Kwang Pyo
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.85-90
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins regulate self-renewal and differentiation in embryonic stem cells (ESCs). Nitration of tyrosine residues of proteins in ESCs modulates their downstream pathways, which can affect self-renewal and differentiation. However, protein tyrosine nitration (PTN) in ESCs has been rarely studied. We reviewed 23 nitrated sites in stem cell proteins. Functional enrichment analysis showed that these nitrated proteins are involved in signal transduction, cell adhesion and migration, and cell proliferation in ESCs. Comparison between the nitrated and known phosphorylated sites revealed that 7 nitrated sites had overlapping phosphorylated sites, indicating functional links of PTNs to their associated signaling pathways in ESCs. Therefore, nitrated proteome provides a basis for understanding potential roles of PTN in self-renewal and differentiation of ESCs.

Regioselective Nitration of Inactive 4,4-Dibromobiphenyl with Nitrogen Dioxide and Molecular Oxygen over Zeolites: An Efficient Preparation of 4,4'-Dibromo-2-nitrobiphenyl

  • Wang, Wei;Peng, Xinhua;Chen, Nan
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.72-75
    • /
    • 2014
  • In the presence of zeolites, 4,4'-dibromobiphenyl could be region-selectively nitrated by the action of nitrogen dioxide and molecular oxygen. The ratio of 4,4'-dibromo-2-nitrobiphenyl to 4,4'-dibromo-3-nitrobiphenyl could reach 14 in a high yield of 90%. Zeolites could be easily regenerated by heating and reused four times to give the results similar to those obtained with fresh catalyst. Compared with the classic nitration method, no nitric acid and sulfuric acid were used, which suggested that the method was an environmentally economic process.

Mass Spectrometry Analysis of In Vitro Nitration of Carbonic Anhydrase II

  • Lee, Soo Jae;Kang, Jeong Won;Cho, Kyung Cho;Kabir, Mohammad Humayun;Kim, Byungjoo;Yim, Yong-Hyeon;Park, Hyoung Soon;Yi, Eugene C.;Kim, Kwang Pyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.709-714
    • /
    • 2014
  • Protein tyrosine nitration is considered as an important indicator of nitrosative stresses and as one of the main factors for pathogenesis of inflammation and neuronal degeneration. In this study, we investigated various nitrosative modifications of bovine carbonic anhydrase II (CAII) through qualitative and semi-quantitative analysis using the combined strategy of Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR MS) and ion-trap tandem mass spectrometry (IT-MS/MS). FT-ICR MS and its spectra were used for the search of the pattern of nitrosative modifications. Identification of nitrosatively modified tyrosine sites were executed through IT-MS/MS. In addition, we also tried to infer the reason for the site-specific nitrosative modifications in CAII. In view of the above purpose, we have explored- i) the side chain accessibility, ii) the electrostatic environment originated from the acidic/basic amino acid residues neighboring to the nitrosatively modified site and iii) the existence of competing amino acid residues for nitration.

Synthesis of Dinitro ${\alpha},{\omega}$--Diols from ${\alpha},{\omega}$--Diols (${\alpha},{\omega}$-디올로부터 디니트로 ${\alpha},{\omega}$--디올의 합성)

  • Kyoo-Jyun Chung;Il-Gyo Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.244-248
    • /
    • 1993
  • Nitroalcohols were prepared by a substitution reaction from the corresponding bromoalcohols. The second nitro group was introduced via different methods depending on the carbon chain length. 3,3-Dinitro-1-propanol was obtained by an intramolecular varient of the alkaline nitration method. Whereas 5,5-dinitro-1-pentanol was given by the catalytic oxidative nitration. 3,3-Dinitro-1-propanol and 5,5-dinitro-1-pentanol were converted to 3,3-dinitro-1,6-hexanediol and 4,4-dinitro-1,8-octanediol via Michael reaction with acrolein followed by the reduction of the resulting aldehydes. Acetyl group was a good protecting group for the substitution reaction while THP was for the catalytic oxidative nitration.

  • PDF

Regioselectivity in Nitration of Biphenyl Derivatives (Biphenyl 유도체의 니트로화 반응에서 위치선택성)

  • Lee, Kwang Jae;Lee, Sang Hee
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.538-545
    • /
    • 2001
  • The ratio of regioisomers in nitration of biphenyl derivatives containing electron-with-drawing group was examined. The ratio of isomers was determined efficiently by quantitative analysis of $^1$H NMR spectrum of product mixture based on $^1$H NMR spectrum of each isomer. Some isomers were isolated after chemical transformation, nitro to amine or carboxylic acid to its ethyl ester, because direct separation was very difficult. To improve the regiselectivity, representative several reaction conditions were tried and the NMR method was applied to determine regioselectivity in nitration of biphenyl derivatives. It was observed that the regioselectivity depend on not only reaction conditions but also position and kind of substituents.

  • PDF

Peroxynitrite Scavenging Activity and its Mechanism of Cheonga-hwan (청아환의 Peroxynitrite 제거 활성 및 기전)

  • 김성호;정지천
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.55-63
    • /
    • 2002
  • Objectives: Peroxynitrite ($ONOO^{-}$), formed from the reaction of superoxide <${\cdot}O_2^{-}$) and nitric oxide (NO), is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in diseases such as aging process, Alzheimer's disease, rheumatoid arthritis, cancer and arteriosclerosis. Due to the lack of endogenous enzymes responsible for $ONOO^{-}$ inactivation, developing a specific $ONOO^{-}$ scavenger is of considerable importance. The aim of this study was to evaluate $ONOO^{-}$ scavenging activity and its mechanism in Cheonga-hwan (CAH). Methods: The $ONOO^{-}$ scavenging activity in CAH was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorescence. The scavenging efficacy was expressed as $IC_{50}$, showing the concentration of each sample required to cause 50% inhibition of DHR 123 oxidation. In a separate study, the protective effect of CAR on $ONOO^{-}$-induced nitration of bovine serum albumin (BSA) was investigated using immunoassay with a monoclonal anti-nitrotyrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. Results: CAH showed potent scavenging activities of $ONOO^{-}$, NO and ${\cdot}O_2^{-}$. The data demonstrated that CAH led to decreased $ONOO^{-}$-mediated nitration of tyrosine through electron donation. CAH showed significant inhibition on nitration of bovine serum albumin by $ONOO^{-}$ in a dose-dependent manner. Conclusions: CAH can be developed as an effective peroxynitrite scavenger for the prevention of the $ONOO^{-}$ involved diseases.

  • PDF

Development of NASTRAN-based Optimization Framework for Vibration Optimum Design of Ship Structure. (선박 구조물의 진동 최적설계를 위한 NASTRAN 기반 최적화 프레임웍의 제안)

  • Kong, Y.M.;Choi, S.H.;Chae, S.I.;Song, J.D.;Kim, Y.H.;Yang, B.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1223-1231
    • /
    • 2005
  • Recently, the issue of ship nitration due to the large scale, high speed and lightweight of ship is emerging. For pleasantness in the cabin, shipbuilders are asked for strict vibration criteria and the degree of nitration level at a deckhouse became an important condition for taking order from customers. This study proposes a new optimization framework that is NASTRAN external call type optimization method (OptShip) and applies to an optimum design to decrease the nitration level of a deckhouse. The merits of this method are capable of using of global searching method and selecting of various objective function and design variables. The global optimization algorithms used here are random tabu search method which has fast converging speed and searches various size domains and genetic algorithm which searches multi-point solutions and has a good search capability in a complex space. By adapting OptShip to full-scale model, the validity of the suggested method was investigated.