• Title/Summary/Keyword: Nitrate transport

Search Result 71, Processing Time 0.025 seconds

Single Well Push-Pull Test를 이용한 TCE 오염 지하수의 In-Situ Bioremediation 타당성조사

  • Kim, Yeong;Istok, Jonnathan;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.188-191
    • /
    • 2003
  • Sing]e-well-push-pull tests were developed for use in assessing the feasibility of in-situ aerobic cometabolism of chlorinated aliphatic hydrocarbons (CAHs). The series includes Transport tests, Biostimulation tests, and Activity tests. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide or chloride (conservative tracers), propane (growth substrate), ethylene, propylene (CAH surrogates), dissolved oxygen (electron acceptor) and nitrate (a minor nutrient). Tests were conducted at an experimental well field of Oregon State University. At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the dissolved gases and nitrate prior to biostimulation. Biostimulation tests were conducted to stimulate propane-utilizing activity of indigenous microorganisms and consisted of sequential injections of site groundwater containing dissolved propane and oxygen. Biostimulation was detected by the increase in rates of propane and oxygen utilization after each injection. Activity tests were conducted to quantify rates of substrate utilization and to confirm that CAH-transforming activity had been stimulated. In particular, the transformation of injected CAH surrogates ethylene and propylene to the cometabolic byproducts ethylene oxide and propylene oxide provided evidence that activity of the monooxygenase enzyme system, responsible for aerobic cometabolic transformations of CAHs had been stimulated. Estimated zero-order transformation rates decreased in the order propane > ethylene > propylene. The series of push-pu3l tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ aerobic cometabolism of CAHs.

  • PDF

Effect of interflow and baseflow on nutrient runoff characteristics in agricultural area

  • Lee, Yunhee;Oa, Seong-Wook
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2019
  • The most common way of reducing non-point source pollutants from agricultural areas is the installation of reservoirs. However, this method is only effective for surface runoff of settleable pollutants. This study was conducted to estimate the effect of interflow, baseflow, and surface runoff on pollutant runoff in a small agricultural catchment. Runoff of organic matters, SS, and T-P were directly proportional to the rainfall variation, while ammonia and nitrate were inversely proportional to the amount of rainfall. The interflow and baseflow was only 46% of the total stream flow, but the nitrate load reached 78%. The interflow as a nutrient transport pathway should be considered for managing a stream water quality. It requires careful attention and appropriate control methodology such as vegetation to consider the influence by interflow. The reservoir as a dry extended detention pond (DEDP) has function of nutrient captor.

Assessments of Nitrate Budget by Currents and Biogeochemical Process in the Korea Strait based on a 3D Physical-Biogeochemical Coupled Model (3차원 물리-생지화학 결합 모델을 이용한 대한해협 주변의 해류와 생지화학적 요인에 의한 질산염 유출입 평가)

  • TAK, YONG JIN;CHO, YANG KI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Nitrate (NO3-) plays an important role in aquaculture and ecosystems in the Korea Strait. Observational data propose that ocean currents are crucial to NO3- budget in the Korea Strait. However, assessment of budget by currents and biogeochemical processes has not yet been investigated. This study examines seasonal and spatial variations in NO3- budget by currents and biological processes in the Korea Strait from 2011 to 2019 using a physical-biogeochemical coupled model. Model results suggest that current-driven net supply of NO3- is consumed by uptake of phytoplankton in the Korea Strait. Advective influx is driven by the Tsushima warm current and the influx by the Jeju warm current is approximately one third of it. All of the influxes are transported out to the East Sea through the Korea Strait, of which two third passes through the western channel and the rest through the eastern channel. Annual mean NO3- net transport show that currents supply NO3- year round except for January, but the budget by biogeochemical processes consumes it every season except for winter.

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

BIOCHEMICAL MODEL AND MECHANISM FOR ACINETOBACTER NITRITE INHIBITION

  • Lee, Chan-Won;Weon, Seung-Yeon
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 2005
  • Nitrite accumulation is not unusual in batch processes such as sequencing batch reactor (SBR) with high-strength of ammonium or nitrate wastewaters. A possible mechanism of nitrite inhibition on Acinetobacter was depicted in a biochemical model, which the protonated species, nitrous acid form of nitrite, affects proton relating transport at the proton-pumping site crossing the cell membrane under unlimited carbon and phosphorus conditions. This effect exerts inhibition of phosphorylation under aerobic condition and yields low APT/ADP ratio, consequently decrease poly-P synthesis and phosphorus uptake from outside the cell in the model.

Assessments of the Nutrient Losses in the Sloped Farm Land (경사지 밭토양에서의 양분유실량 평가)

  • Jung, Pil-Kyun;Eom, Ki-Cheol;Ha, Sang-Keon;Zhang, Yong-Seon;Hur, Seung-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.47-50
    • /
    • 2009
  • Nutrient losses, especially nitrogen and phosphorus, in agricultural runoff can contaminate surface and ground water, leading to eutrophication. Thus, erosion control is crucial to minimizing nutrient losses from agricultural land. Assessments of various erosion control practices were carried out under various cropping system, soil management practices, and slope conditions by means of a lysimeter study and under artificial rainfall. Soil and nutrient losses were monitored in a small agricultural field to evaluate the soil conservation practices. Nutrient losses occur in runoff and leachate (dissolved nutrient) and in sediments (particulate nutrient). Dissolved nitrates accounted for the majority (about 90%) of nitrate transport within the soil. Particulate phosphate in sediments represented the majority (60% to 67%) of phosphate transport. Recently, engineering and agronomic erosion-control practices haver been used to reduce erosion problems in fields on slopes. These practices reduced soil loss, runoff, and nutrient loss to 1/6, 1/2,and 1/3 their original levels, respectively. Bioavailable particulate phosphate in sediments represents a variable but longterm source of phosphate for algae. Dissolved nitrate and phosphate are immediately available for algal uptake, so reducing fluxes of these nutrients should also reduce the risk of eutrophication.

Distribution and Transport of Suspended Particulate Matter, Dissolved Oxygen and Major Inorganic Nutrients in the Cheju Strait

  • Suk, Moon-Sik;Hong, Gi-Hoon;Chung, Chang-Soo;Chang, Kyung-Il;Kang, Dong-Jin
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.55-63
    • /
    • 1996
  • Distribution of suspended particulate matter, dissolved oxygen and major inorganic nutrients along a meridional section ($126^{\circ}$ 33' E) in the Cheju Strait is described along with the hydrographic and current data obtained during April 25-27, 1995. The current measurements was conducted using a vessel-mounted Acoustic Doppler Current Profiler (ADCP). Repeated coverage along an ADCP transect during 25 hours allows to calculate the daily mean along- and cross-strait currents. Measured material concentrations and the mean current speed were used to estimate the flux density (cencentration times current speed) of materials. Two types of depth distibution of flux densities were observed. for nitrate and suspended particulate matter, the depth distribution pattern of materials determines those of flux densities. However, flow patterns determine those of flux densities for dissolved oxygen, phosphate and silicic acid. The total along-strait water volume transport is about 0.3 Sv (1Sv $10^{6}$ $m^{3}/s^{-1}$). The total along-strait material transports are estimated to be 3.1 $${\times} $10^{5}$ $g/s^{-1},$ 2.4 ${\times}$ $10^{6}\;g/s^{-1},$ 7.I ${\times}$ $10^{2}\;mol/s^{-1},$ 3.I ${\times}$ $10\;mol/s^{-1},$ 1.7 ${\times}$ $10^{3}\;mol/s^{-1}$ for suspended particulate matter, dissolved oxygen, nitrate ion, silicic acid and phosphate ion, respectively.

  • PDF

Gallium(III) Nitrate Inhibits Pathogenic Vibrio splendidus Vs by Interfering with the Iron Uptake Pathway

  • Song, Tongxiang;Zhao, Xuelin;Shao, Yina;Guo, Ming;Li, Chenghua;Zhang, Weiwei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.973-983
    • /
    • 2019
  • It is well known that iron is critical for bacterial growth and pathogenic virulence. Due to chemical similarity, $Ga^{3+}$ competes with $Fe^{3+}$ for binding to compounds that usually bind $Fe^{3+}$, thereby interfering with various essential biological reactions. In our present study, gallium(III) nitrate [$Ga(NO_3)_3$] could repress the growth of V. splendidus Vs without complete inhibition. In the presence of $Ga(NO_3)_3$, the secretion of homogentisic acid-melanin (HGA-melanin) in V. splendidus Vs cells could be increased by 4.8-fold, compared to that in the absence of $Ga(NO_3)_3$. HGA-melanin possessed the ability to reduce $Fe^{3+}$ to $Fe^{2+}$. In addition, HGA-melanin increased the mRNA levels of feoA and feoB, genes coding Fe2+ transport system proteins to 1.86- and 6.1-fold, respectively, and promoted bacterial growth to 139.2%. Similarly, the mRNA expression of feoA and feoB was upregulated 4.11-fold and 2.71-fold in the presence of $640{\mu}M$ $Ga(NO_3)_3$, respectively. In conclusion, our study suggested that although $Ga(NO_3)_3$ could interfere with the growth of V. splendidus Vs, it could also stimulate both the production of $Fe^{3+}$-reducing HGA-melanin and the expression of feoA and feoB, which facilitate $Fe^{2+}$ transport in V. splendidus Vs.

Nitrogen Partitioning at Low Temperature in Fall-Sowing Species II. Distribution to roots, xylem and phloem transport of newly absorbed nitrate (추파 청예작물의 저온 조건하에서 질소의 분배에 관한 연구 II. 흡수된 질산태 질소의 목부, 체관부 및 뿌리로의 전이)

  • Kim, T.H.;Kim, B.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.49-56
    • /
    • 1999
  • With ${15}^N$ labeling under split roots system of winter rye (Secale cereale L.) and forage rape (Brassica napus L.) grown at $5^{\circ}C$ and $25^{\circ}C$, the N flows were respectively quantified to investigate the transport of newly absorbed nitrate-N in whole plant level at low temperature. Comparing with $25^{\circ}C$ culture condition, the total absorbed nitrate-N content at $5^{\circ}C$ decreased to 59.3% and 27.1% in winter rye and forage rape during 9 days. About 2.5% and 7.6 % of nitrate-N were transported into roots, respectively, in winter rye and in forage rape at $25^{\circ}C$. These proportions increased at $5^{\circ}C$ to 3.8% and 10.9%, respectively. Total N contents transferred by xylem in winter rye grown and forage rape grown at $25^{\circ}C$ during were 55.9 and 54.4 mg N/plant, respectively. xylem flows at $5^{\circ}C$ were 60.4% and 28.8% lower than at $25^{\circ}C$ for winter rye and forage rape. These valves represented that averagely 96.8 % and 90.8% of total absorbed nitrate-N were transferred to leaves in winter rye and forage rape during 9 days. Phloem flows were the smallest among other N flows and were much less influenced by temperature treatment for two species examined. About 2.5% and 0.5% of absorbed N were recycled into roots by phloem transport at $25^{\circ}C$, respectively, for winter rye and forage rape. These proportions increased to 5.2% and 0.9% at $5^{\circ}C$.

  • PDF

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.