DOI QR코드

DOI QR Code

Gallium(III) Nitrate Inhibits Pathogenic Vibrio splendidus Vs by Interfering with the Iron Uptake Pathway

  • Song, Tongxiang (School of Marine Sciences, Ningbo University) ;
  • Zhao, Xuelin (School of Marine Sciences, Ningbo University) ;
  • Shao, Yina (School of Marine Sciences, Ningbo University) ;
  • Guo, Ming (School of Marine Sciences, Ningbo University) ;
  • Li, Chenghua (School of Marine Sciences, Ningbo University) ;
  • Zhang, Weiwei (School of Marine Sciences, Ningbo University)
  • Received : 2019.03.06
  • Accepted : 2019.06.06
  • Published : 2019.06.28

Abstract

It is well known that iron is critical for bacterial growth and pathogenic virulence. Due to chemical similarity, $Ga^{3+}$ competes with $Fe^{3+}$ for binding to compounds that usually bind $Fe^{3+}$, thereby interfering with various essential biological reactions. In our present study, gallium(III) nitrate [$Ga(NO_3)_3$] could repress the growth of V. splendidus Vs without complete inhibition. In the presence of $Ga(NO_3)_3$, the secretion of homogentisic acid-melanin (HGA-melanin) in V. splendidus Vs cells could be increased by 4.8-fold, compared to that in the absence of $Ga(NO_3)_3$. HGA-melanin possessed the ability to reduce $Fe^{3+}$ to $Fe^{2+}$. In addition, HGA-melanin increased the mRNA levels of feoA and feoB, genes coding Fe2+ transport system proteins to 1.86- and 6.1-fold, respectively, and promoted bacterial growth to 139.2%. Similarly, the mRNA expression of feoA and feoB was upregulated 4.11-fold and 2.71-fold in the presence of $640{\mu}M$ $Ga(NO_3)_3$, respectively. In conclusion, our study suggested that although $Ga(NO_3)_3$ could interfere with the growth of V. splendidus Vs, it could also stimulate both the production of $Fe^{3+}$-reducing HGA-melanin and the expression of feoA and feoB, which facilitate $Fe^{2+}$ transport in V. splendidus Vs.

Keywords

References

  1. Han QX, Keesing JK, Liu DY. 2016. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. Rev. Fish. Sci. Aquac. 24: 326-341. https://doi.org/10.1080/23308249.2016.1193472
  2. Li Z, Zhang JC, L i X, Wang XY, Cao ZH, Wang LL, Xu YP. 2016. Efficiency of a bacteriophage in controlling vibrio infection in the juvenile sea cucumber Apostichopus japonicus. Aquac. 451: 345-352. https://doi.org/10.1016/j.aquaculture.2015.09.024
  3. Zhang CY, Wang YG, Rong XJ. 2006. Isolation and identification of causative pathogen for skin ulcerative syndrome in Apostichopus japonicus. J. Fish. Sci. China 30: 118-123.
  4. Kirchman DL, Meon B, Cottrell MT, Hutchins DA, Weeks D, Bruland KW. 2000. Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnol. Oceanogr. 45: 1681-1688. https://doi.org/10.4319/lo.2000.45.8.1681
  5. Larson JA, Higashi DL, Stojiljkovic I, So M. 2002. Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect. Immun. 70: 1461-1467. https://doi.org/10.1128/IAI.70.3.1461-1467.2002
  6. Sritharan M. 2000. Iron as a candidate in virulence and pathogenesis in mycobacteria and other microorganisms. World. J. Microiol. Biotechnol. 16: 769-780. https://doi.org/10.1023/A:1008995313232
  7. Raymond KN, Carrano CJ. 1979. Coordination chemistry and microbial iron transport. Accounts Chem. Res. 12: 183-190. https://doi.org/10.1021/ar50137a004
  8. Wandersman C, Delepelaire P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611-647. https://doi.org/10.1146/annurev.micro.58.030603.123811
  9. Mendez P, Perez-Pascual R, Gomez D, Guijarro JA. 2012. An overview of virulence-associated factors of gram-negative fish pathogenic bacteria. Health. Environ. 5: 133-156.
  10. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. 2006. Feo--transport of ferrous iron into bacteria. Biometals 19: 143-157. https://doi.org/10.1007/s10534-006-0003-2
  11. Robey M, Cianciotto NP. 2002. Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect. Immun. 70: 5659-5669. https://doi.org/10.1128/IAI.70.10.5659-5669.2002
  12. Zheng H X, C hatfield C H, L iles M R, C ianciotto NP. 2013. Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect. Immun. 81: 4182-4191. https://doi.org/10.1128/IAI.00858-13
  13. Zhang WW, Liang WK, Li CH. 2016. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1. J. Hazard. Mater. 302: 217-224. https://doi.org/10.1016/j.jhazmat.2015.10.003
  14. Song TX, Liu HJ, Lv TT, Zhao XL, Shao YN, Han QX, et al. 2018. Characteristics of the iron uptake-related process of a pathogenic Vibrio splendidus strain associated with massive mortalities of the sea cucumber Apostichopus japonicus. J. Invertebr. Pathol. 155: 25-31. https://doi.org/10.1016/j.jip.2018.05.001
  15. Ross-Gillespie A, Weigert M, Brown SP, Kummerli R. 2014. Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evol. Med. Public Health 1: 18-19. https://doi.org/10.1093/emph/eou003
  16. Rodriguez GM, Gardner R, Kaur N, Phanstiel IVO. 2008. Utilization of $Fe^{3+}$-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis. Biometals 21: 93-103. https://doi.org/10.1007/s10534-007-9096-5
  17. Stojiljkovic I, Kumar V, Srinivasan N. 1999. Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol. Microbiol. 31: 429-442. https://doi.org/10.1046/j.1365-2958.1999.01175.x
  18. Minandri F, Bonchi C, Frangipani E, Imperi F, Visca P. 2014. Promises and failures of gallium as an antibacterial agent. Future Microbiol. 9: 379-397. https://doi.org/10.2217/fmb.14.3
  19. Kaneko Y, Thoendel M, Olakanmi O, Britiganet BE, Singh PK. 2007. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117: 877-888. https://doi.org/10.1172/JCI30783
  20. Deleon K, Balldin F, Watters C, Hamood A, Griswold J, Sreedharan S, et al. 2009. Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice. Antimicrob. Agents Chemother. 53: 1331-1337. https://doi.org/10.1128/AAC.01330-08
  21. Chitambar CR. 2016. Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta 1863: 2044-2053. https://doi.org/10.1016/j.bbamcr.2016.04.027
  22. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  23. Payne SM. 1994. Detection, isolation, and characterization of siderophores, Methods Enzymol. 235: 329-344. https://doi.org/10.1016/0076-6879(94)35151-1
  24. Zhu S, Lu Y, Xu X, Chen J, Yang J, Ma X. 2015. I solation and identification of a gene encoding 4-hydroxyphenylpyruvate dioxygenase from the red-brown pigment-producing bacterium Alteromonas stellipolaris LMG 21856. Folia Microbiol. 60: 1-8. https://doi.org/10.1007/s12223-014-0332-4
  25. Chatfield CH, Cianciotto NP. 2007. The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect. Immun. 75: 4062-4070. https://doi.org/10.1128/IAI.00489-07
  26. Brewster JD. 2003. A simple micro-growth assay for enumerating bacteria. J. Microbiol. Methods 53: 77-86. https://doi.org/10.1016/S0167-7012(02)00226-9
  27. Zhang WW, Sun K, Cheng S, Sun L. 2008. Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain. Appl. Environ. Microbiol. 74: 6254-6262. https://doi.org/10.1128/AEM.00109-08
  28. Torresi M, Acciari VA, Piano A, Serratore P, Prencipe V, Migliorati G. 2011. Detection of Vibrio splendidus and related species in Chamelea gallina sampled in the Adriatic along the Abruzzi coastline. Vet. Ital. 47: 371-378.
  29. Olakanmi O, Britigan BE, Schlesinger LS. 2000. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect. Immun. 68: 5619-5627. https://doi.org/10.1128/IAI.68.10.5619-5627.2000
  30. Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, et al. 2008. The potential of desferrioxaminegallium as an anti-pseudomonas therapeutic agent. Proc. Natl. Acad. Sci. USA 105: 16761-6766. https://doi.org/10.1073/pnas.0808608105
  31. Menon S, Jr WH, Tsan MF. 1978. Studies on gallium accumulation in inflammatory lesions: II. Uptake by Staphylococcus aureus: concise communication. J. Nucl. Med. 19: 44-47.
  32. Antunes LCS, Imperi F, Minandri F, Visca P. 2012. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 56: 5961-5970. https://doi.org/10.1128/AAC.01519-12
  33. Harrington JR, Martens RJ, Cohen ND, Bernstein LR. 2006. Antimicrobial activity of gallium against virulent Rhodococcus equiin vitro and in vivo. J. Vet. Pharmacol. Ther. 29: 121-127.
  34. Fecteau ME, Aceto HW, Bernstein LR, Sweeney RW. 2014. Comparison of the antimicrobial activities of gallium nitrate and gallium maltolate against Mycobacterium avium subsp. paratuberculosis in vitro. Vet. J. 202: 195-197. https://doi.org/10.1016/j.tvjl.2014.06.023
  35. Oyebode Olakanmi, Banurekha Kesavalu, Rajamouli Pasula, et al. Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob. Agents Chemother. 57: 6074-6080. https://doi.org/10.1128/AAC.01543-13
  36. Mitchell G. Thompson, Vu Truong-Le, Yonas A. Alamneh. 2015. Evaluation of gallium citrate formulations against a multidrug-resistant strain of Klebsiella pneumoniae in a murine wound model of infection. Antimicrob. Agents Chemother. 59: 6484-6493. https://doi.org/10.1128/AAC.00882-15
  37. Xu ZR, Zhao X, Chen XD, Chen Z, Xia ZF. 2017. Antimicrobial effect of gallium nitrate against bacteria encountered in burn wound infections. Rsc. Adv. 7: 52266-52273. https://doi.org/10.1039/C7RA10265H
  38. Emery T. 1971. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10: 1483-1488. https://doi.org/10.1021/bi00784a033
  39. Leong J, Neilands JB, Raymond KN. 1974. Coordination isomers of biological iron transport compounds III. (1) Transport of $\lambda$-cis-chromic desferriferrichrome by Ustilago sphaerogena. Biochem. Biophys. Res. Commun. 60: 1066-1071. https://doi.org/10.1016/0006-291X(74)90421-5
  40. Yabuuchi E, Omyama A. 1972. Characterization of "pyomelanin"-producing strains of Pseudomonas aeruginosa. Int. J. Syst. Bacteriol. 22: 53-64. https://doi.org/10.1099/00207713-22-2-53
  41. Ogunnariwo J, Hamiltonmiller JM. 1975. Brown- and redpigmented Pseudomonas aeruginosa: differentiation between melanin and pyorubrin. J. Med. Microbiol. 8: 199-203. https://doi.org/10.1099/00222615-8-1-199
  42. Coon SL, Kotob S, Jarvis BB, Fuqua WC, Weiner RM. 1994. Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Appl. Environ. Microbiol. 60: 3006-3010. https://doi.org/10.1128/AEM.60.8.3006-3010.1994
  43. David C, Daro A, Szalai E, Atarhouch T, Mergeay M. 1996. Formation of polymeric pigments in the presence of bacteria and comparison with chemical oxidative coupling-II. Catabolism of tyrosine and hydroxyphenylacetic acid by Alcaligenes eutrophus CH34 and mutants. Eur. Polym. J. 32: 669-697. https://doi.org/10.1016/0014-3057(95)00207-3
  44. Zughaier SM, Ryley HC, Jackson SK. 1999. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect. Immun. 67: 908-913. https://doi.org/10.1128/IAI.67.2.908-913.1999
  45. Steinert M, Flügel M, Schuppler M, Helbig JH, Supriyono A, Proksch P, et al. 2001. The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS. Microbiol. Lett. 203: 41-47. https://doi.org/10.1111/j.1574-6968.2001.tb10818.x
  46. Turick CE, Beliaev AS, Zakrajsek BA, Reardon CL, Lowy DA, Poppy TE, et al. 2009. The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1. FEMS. Microbiol. Ecol. 68: 223-235. https://doi.org/10.1111/j.1574-6941.2009.00670.x
  47. Turick CE, Jr CF, Tisa LS. 2008. Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron. Can. J. Microbiol. 54: 334-339. https://doi.org/10.1139/W08-014
  48. Stojiljkovic I, Cobeljic M, Hantke K. 1993. Escherichia coli K-12 ferrous iron uptake mutants are impaired in their ability to colonize the mouse intestine. FEMS. Microbiol. Lett. 108: 111-115. https://doi.org/10.1111/j.1574-6968.1993.tb06082.x
  49. Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I. 1996. Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect. Immun. 64: 4549-4556. https://doi.org/10.1128/IAI.64.11.4549-4556.1996
  50. Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 3: 59.
  51. Mey AR, Wyckoff EE, Vanamala K, Fisher CR, Payne SM. 2005. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect. Immun. 73: 8167-8178. https://doi.org/10.1128/IAI.73.12.8167-8178.2005
  52. Aranda J, Cortes P, Garrido ME, Fittipaldi N, Llagostera M, Gottschalk M, et al. 2009. Contribution of the FeoB transporter to Streptococcus suis virulence. Int. Microbiol. 12: 137-143.

Cited by

  1. Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data vol.13, pp.4, 2021, https://doi.org/10.1111/raq.12555
  2. Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-87328-2