DOI QR코드

DOI QR Code

Development of Penicillium italicum-Specific Primers for Rapid Detection among Fungal Isolates in Citrus

  • Chen, Kai (School of Bioengineering and Food, Hubei University of Technology) ;
  • Tian, Zhonghuan (Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University) ;
  • Jiang, Fatang (School of Bioengineering and Food, Hubei University of Technology) ;
  • Long, Chao-an (Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University)
  • Received : 2019.04.12
  • Accepted : 2019.05.08
  • Published : 2019.06.28

Abstract

Blue mold in citrus is caused by Penicillium italicum. In this study, the P. italicum-specific primers were developed for rapid detection based on the conserved genes RPB1 and RPB2 among Penicillium genomes. The two primer pairs RPB1-a and RPB1-b proved to be specific to detect P. italicum. The PCR assay among 39 fungal isolates and the colonial, pathogenic morphologies and molecular methods validated the specificity and reliability of these two primer pairs. This report provided a method and P. italicum-specific primers, which might greatly contribute to citrus postharvest industry.

Keywords

References

  1. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 109: 6241-6246. https://doi.org/10.1073/pnas.1117018109
  2. Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M. 2000. Species identification by means of the cytochrome b gene. Int. J. Legal Med. 114: 23-28. https://doi.org/10.1007/s004140000134
  3. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5: e8613. https://doi.org/10.1371/journal.pone.0008613
  4. Kiss L. 2012. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc. Natl. Acad. Sci. USA 109: E1811. https://doi.org/10.1073/pnas.1207143109
  5. Fox GE, Wisotzkey JD, Jurtshuk JR P. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Evol. Microbiol. 42: 166-170.
  6. Song YL, Kato N, Liu CX, Matsumiya Y, Kato H, Watanabe K. 2000. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group-and speciesspecific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol. Lett. 187: 167-173. https://doi.org/10.1016/S0378-1097(00)00196-8
  7. Rikkinen J. 2013. Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6: 3-32. https://doi.org/10.3897/mycokeys.6.3869
  8. Tournas V, Katsoudas E. 2005. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 105: 11-17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002
  9. Wiese J, Ohlendorf B, Blumel M, Schmaljohann R, Imhoff JF. 2011. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar. Drugs 9: 561-585. https://doi.org/10.3390/md9040561
  10. Xu X, Chen J, Xu H, Li D. 2014. Role of amajor facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genet. Biol. 69: 75-83. https://doi.org/10.1016/j.fgb.2014.06.002
  11. Zhu P, Wu L, Liu L, Huang L, Wang Y, Tang W, et al. 2013. Fusarium asiaticum: an emerging pathogen jeopardizing postharvest asparagus spears. J. Phytopathol. 161: 696-703. https://doi.org/10.1111/jph.12120
  12. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, et al. 2001. Development of a PCR assay for identification of staphylococci at genus and species levels. J. Clin. Microbiol. 39: 2541-2547. https://doi.org/10.1128/JCM.39.7.2541-2547.2001
  13. Alastruey-Izquierdo A, Hoffmann K, de Hoog GS, Rodriguez-Tudela JL, Voigt K, Bibashi E, et al. 2010. Species recognition and clinical relevance of the zygomycetous genus Lichtheimia (syn. Absidia pro parte, Mycocladus). J. Clin. Microbiol. 48: 2154-2170. https://doi.org/10.1128/JCM.01744-09
  14. Kepler RM, Humber RA, Bischoff JF, Rehner SA. 2014. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 106: 811-829. https://doi.org/10.3852/13-319
  15. Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, et al. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66: 297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
  16. Chen K, Tian Z, Wang L, Long CA. 2017. Development of specific primers based on the genomes of Penicillium spp. for rapid detection of Penicillium digitatum among fungal isolates in citrus. Eur. J. Plant Pathol. 149: 201-209. https://doi.org/10.1007/s10658-017-1154-4
  17. Youssef K, Ligorio A, Sanzani SM, Nigro F, Ippolito A. 2012. Postharvest Biol. Technol. 72: 57-63. https://doi.org/10.1016/j.postharvbio.2012.05.004
  18. Yin GH, Zhang YL, Pennerman KK, Wu GX, Hua SST, Yu JJ, et al. 2017. Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. J. Fungi 3: 12. https://doi.org/10.3390/jof3010012
  19. McGinnis S, Madden TL. 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: 20-25.
  20. Li BQ, Zong Y, Du Z, Chen Y, Zhang Z, Qin GZ, et al. 2015 Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Mol. Plant Microbe Interact. 28: 635-647. https://doi.org/10.1094/MPMI-12-14-0398-FI
  21. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. 2008. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4: 193-201.
  22. Marcet-Houben M, Ballester AR, de la Fuente B, Harries E, Marcos JF, Gonzalez-Candelas L, et al. 2012. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics 13: 646. https://doi.org/10.1186/1471-2164-13-646
  23. Specht T, Dahlmann TA, Zadra I, Kurnsteiner H, Kuck U. 2014. Complete sequencing and chromosome-scale genome assembly of the industrial progenitor strain P2niaD18 from the penicillin producer Penicillium chrysogenum. Genome Announc. 2: e00577-14.
  24. Amselem J, Cuomo CA, Van Kan JA, Viaud M, Benito EP, Couloux A, et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7: e1002230. https://doi.org/10.1371/journal.pgen.1002230

Cited by

  1. DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables vol.14, pp.2, 2019, https://doi.org/10.1111/1751-7915.13560
  2. Differentiation of Penicillium roqueforti from Closely Related Species Contaminating Cheeses and Dairy Environment vol.7, pp.4, 2019, https://doi.org/10.3390/fermentation7040222