• Title/Summary/Keyword: Nitrate loss

Search Result 79, Processing Time 0.02 seconds

Development of Biological Filtration Process for Effective Nitrogen Removal and its Control strategies in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거를 위한 운전제어법 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.230-237
    • /
    • 2006
  • The operational parameters and control strategies of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. Methanol addition was controlled based on the COD/N ratio or McCarty's equation. Constant COD/N ratio control results in excess addition under large diurnal fluctuation of $NOx^--N$, and McCarty's equation can be used to add appropriate amount of methanol. Control of methanol addition by on-line nitrate measurement, control of aeration by on-line DO measurement, and control of backwashing by head loss measurement are successfully operated. These results proved that this process prove the easy-maintenance and cost-effectively treatment is attainable.

Physico-Chemical Factors on the Growth of Cochlodinium polykrikoides and Nutrient Utilization (Cochlodinium polykrikoides의 성장에 미치는 물리$\cdot$화학적 요인과 영양염 이용)

  • KIM Hyung Chul;LEE Chang Ku;LEE Sam Geun;KIM Hak Gyoon;PARK Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.445-456
    • /
    • 2001
  • In the 1990s, Cochlodinium polykikoides red tide has been annually occurred in the southern coast of Korea and caused the mass damage to the fisheries with a huge amount of economic loss. The present study was done to establish the biological foundation for the elucidation of the mechanism of C. polykikoiaes red tide. The growth response of C. polykikoides to physico-chemical factors such as temperature, salinity, pH, and light intensity were examined using axenic cultures to evaluate the relative importance of these factors on the dynamics of natural populations, It was found that the highest growth conditions were $25^{\circ}C,\;40\%_{\circ}$, pH 7.5, and 7,500 lux, respectively. The tolerable salinity range of growth was relatively wide at an optimum temperature and was reduced to a much narrower range at a sub-optimum temperature. These findings indicate that C. polykikoides is an eurythermal and euryhaline organism. The organism demanded higher light intensity and oceanic pH narrow in its growth. C. polykikoides utilize inorganic nutrients, such as nitrate and ammonium as N, and phosphate as P. The nutritional requirements of C. polykikoides were $40{\mu}M$ for nitrate, $50{\mu}M$ for ammonium, and $5{\mu}M$ for phosphate. The half saturation constant (Ks) for growth was $2.10{\mu}M$ for nitrate, $1.03{\mu}M$ for ammonium, and $0.57{\mu}M$ for phosphate. These values were comparatively smaller than those of other dinoflagellates reported previously. We confirmed that the organism is characterized as an eutrophic species. However, ammonium Ks value is smaller than that of other eutrophic species, This result indicates that C. polykikoides red tide may outbreak in the waters which eutrophication is in progress rather than eutrophicated waters. C. polykikoides preferred ammonium better than nitrate as a nitrogen source when in a growth stage, Therefore, our results indicate that ammonium is more important nutrient on the growth of the organism in comparison with other inorganic nutrients and C. polykikoides red tide is related with the increased ammonium concentration in the coastal waters.

  • PDF

Behavior of NO3-N and Accompanying Cations Derived from Urea under Upland Condition -I. Leaching of NO3-N and Accompanying Cations (요소유래(尿素由來) NO3-N 및 동반(同伴) 양(陽)이온의 토양(土壤) 중 행동(行動) -I. NO3-N 동반(同伴) 양(陽)이온의 용탈(溶脫))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • Lysimeter experiments were conducted to elucidate the behavior of $NO_3-N$ derived from urea applied at different rates and accompanying cations in soils and to further provide fundamental information of rational nitrogen-fertilizer management. Urea was applied at rates of 0, 7, 14, 21, 28 and 35kg N/10a to sandy loam pakced into PVC cylindrical lysimeter(vol. : $0.187m^2$, area $0.43m^2$). Leachates from the lysimeter with or without grass grown were collected periodically and analyzed for $NO_3$ and cations. Grass growth and yield responses to N fertilization were also examined. Dry matter yield and nitrogen uptake increased with the urea application rate. The amount of leachate from the lysimeter was negatively correlated with urea application ratesl($r=-0.95^{**}$). The nitrate leaching loss with grass grown was 230 g N/10a at the maximum rate of 35kg N/10a, but the highest leaching loss was observed as 1,607 g N/10a from the bare plot. Increase in urea application rates decreased significantly leaching losses of Ca, Mg, K and Na(>0.01). The highest leaching loss from the bare plot was observed for Ca but only 6.5% of exchangeable form and 14.0% for K from the grass plot respectively. Equivalent ratio of cations to nitrate leached were 3.2 % for the bare plot and the ratio for the grass plot increased with the urea application rate, ranging from 18.6 to 32.7%.

  • PDF

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Effect of acute heat stress on feed intake and plasma concentrations of tumor necrosis factor-α and free amino acids in growing pigs

  • Kim, Byeonghyeon;Kim, Minji;Kim, Hye Ran;Ji, Sang Yun;Kim, Ki Hyun;Chun, Ju Lan;Baek, Youl-Chang;Lee, Yookyung;Jeong, Jin Young;Lee, Sung Dae
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.597-604
    • /
    • 2020
  • Exposure to heat stress (HS) has negative effects on pig production and health. Plasma concentrations of amino acids (AAs) can be used as indicators of HS. Therefore, this study was conducted to evaluate the effect of acute HS on feed intake, water drink, and plasma AAs in pigs. A total of 6 growing pigs (n = 6, 3 boars and 3 gilts) were raised in thermal neutral (TN; 25℃) conditions for the 5-d adaptation period as a control. After the adaptation, pigs were exposed to HS at 33℃ (HS33) for 24 h. All the pigs were fed the same diet formulated to meet or exceed predicted requirements during the whole experimental period. Blood samples were collected after the adaptation and heat treatment to verify the AAs. Measurements were the average daily feed intake (ADFI), average daily water intake (ADWI), water loss, tumor necrosis factor (TNF)-α, nitrate, total nitric oxide, and AAs in the plasma samples. Data were analyzed using the PROC GLM of SAS. HS33 had a lower ADFI (p < 0.05) and a tendency for an increased ADWI and water loss compared to TN. The level of TNF-α was significantly decreased (p < 0.05) in HS33. HS33 had a lower concentration of histidine and sarcosine compared to TN; however, there were no differences in the levels of nitrates and total nitric oxide. In conclusion, the results of this study show the differential effect of HS on the plasma concentration of AAs. We expect that the changed AAs could be potential indicators of HS.

Understanding to Enhance Efficiency of Nitrogen Uses in a Reclaimed Tidal Soil

  • Lee, Sang-Eun;Kim, Hye-Jin;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.955-960
    • /
    • 2012
  • In most agricultural soils, ammonium ($NH_4{^+}$) from fertilizer is quickly converted to nitrate ($NO_3{^-}$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. The salinity significantly affects efficiency of N fertilizer in reclaimed tidal soil, and the soil pH may influence the conversion rate of ammonium to nitrate and ultimately affect nitrogen losses from the soil profile. Several results suggest that pH has important effects on recovery of fall-applied N in the spring if field conditions are favorable for leaching and denitrification except that effects of soil pH are not serious under unfavorable conditions for N loss by these mechanisms. Soil pH, therefore, deserves attention as an important factor in the newly reclaimed tidal soils with applying N. However, fate of N studies in a newly reclaimed tidal soils have been rarely studied, especially under the conditions of saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea treated into the reclaimed tidal soil is important for nutrient management and environmental quality. In this article, we reviewed yields of rice and fate of nitrogen with respect to the properties of reclaimed tidal soils.

Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Cho, Won Mo;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.514-522
    • /
    • 2017
  • Objective: The study aimed to assess the N use efficiency (NUE) of pig slurry (in comparison with chemical fertilizer) for each regrowth yield and annual herbage production and their nutritive value. Methods: Consecutive field experiments were separately performed using a single application with a full dose of N (200 kg N/ha) in 2014 and by four split applications in 2015 in different sites. The experiment consisted of three treatments: i) control plots that received no additional N, ii) chemical fertilizer-N as urea, and iii) pig-slurry-N with five replicates. Results: The effect of N fertilization on herbage yield, N recovery in herbage, residual inorganic N in soil, and crude protein were significantly positive. When comparing the NUE between the two N sources (urea and pig slurry), pig slurry was significantly less effective for the earlier two regrowth periods, as shown by lower regrowth dry matter (DM) yield, N amount recovered in herbage, and inorganic N availability in soil at the 1st and 2nd cut compared to those of urea-applied plots. However, the effect of split application of the two N sources was significantly positive at the last two regrowth periods (at the 3rd and 4th cut). The two N sources and/or split application had little or no influence on neutral detergent fiber (NDF) content, acid detergent fiber (ADF) content, and in vitro DM digestibility, whereas cutting date was a large source of variation for these variables, resulting in a significant increase in in vitro DM digestibility for the last two regrowth periods when an increase in NDF and ADF content occurred. Split application of N reduced the N loss via nitrate leaching by 36% on average for the two N sources compared to a single application. Conclusion: The pig slurry-N was utilized as efficiently as urea-N for annual herbage yield, with a significant increase in NUE especially for the latter regrowth periods.

Distribution and Leaching of Basal Nitrogen in Direct Seeding Rice on Dry Paddy (벼 건답직파 재배에서 기비질소의 토층간 분포와 용탈)

  • 한상준;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.752-758
    • /
    • 1997
  • Urea, which is the major nitrogenous fertilizer used in Korea, has been used inefficiently in direct-seeding on dry soil by farmers. This study was conducted to investigate changes in concentrations of basal N within soil layers and its loss during early stage of rice growth. Urea fertilizer was applied in the rates of 7, 5.25, 3.5, 1.75, 0kg- N /10a under direct-seeded rice in dry paddy soil. The concentrations of ammonium and nitrate were determined in soil samples with different depths during period from seeding to the 3rd leaf stage. Futhermore, N leaching was measured in lysimeter designed with pot in greenhouse. ${NH_4}^+ \; and\; {NO_3}^-$ adsorption by soil increased with increasing concentration of added urea and decreased as deeper in soil layers. ${NH_4}^+$ concentration reached its peak at 7 days after urea application (DAA) and disappeared almostly at 14 DAA. ${NO_3}^-$ reached its peak at 10 DAA and decreased slowly until 14 DAA. ${NO_3}^-$N leaching started next day after urea application and completed until 11 DAA. We concluded that most of basal N applied to direct-seeded paddy was lost by leaching and not useful for rice plant which was in stage of germination. It is urgent need to develop new nitrogen application method for direct-seeding rice on dry soil.

  • PDF

Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2023-2033
    • /
    • 2021
  • Objective: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. Methods: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. Results: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4++NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. Conclusion: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Yulmunchon Tributary of the Buk-Han River Basin (북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N, P 부하량)

  • Jung, Yeong-Sang;Yang, Jae E.;Park, Chol-Soo;Kwon, Young-Gi;Joo, Young-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • Nitrogen and phosphorus loads from an agricultural watershed of the Yulmun-chon tributary in the Buk-Han River Basin were quantified based on total amounts of water stream flow. The water quality and soil loss were estimated. Levels of the stream were recorded automatically using the water level meter. The flow velocities, along with the cross-sectional areas of the riverbed, were measured to estimate total amounts of water flow at three monitoring sites in this tributary. Water samples were collected at nine sites with two weeks interval from May to August and analyzed for the water quality parameters. Amounts of soil loss were estimated by the USLE. The size of the Yulmunchon watershed was 3,210 ha, of which paddy and upland soil areas were composed about 41%. The total amounts of soil loss from the watershed areas were estimated to be $13,273Mg\;year^{-1}$, showing 53%, 46% and 0.7% of the soil loss ratio from upland, forest, and paddy areas, respectively. Electrical conductivities and Nitrogen concentrations of the stream water were higher in the lower watershed area than in the upper area. Increments of N were higher for $NO_3-N$ than $NH_4-N$. Nitrate nitrogen was the major N form to pollute the water due to the agricultural activity. Total runoff was about 72% of the total precipitation in the watershed. The maximum loads of T-N and T-P due to the runoff were estimated to be 1,500 and $5kg\;day^{-1}$, respectively. Concentrations of $NO_3-N$ and $NH_4-N$ in the runoff were 13.5 and 1.8 times higher than those in precipitation. The N loads were mainly from soil loss, application of fertilizer, and livestock wastes, which were 52% of total N load. Results demonstrated that reduction of fertilizer use and the soil loss would be essential for water quality protection of the agricultural watershed.

  • PDF