• Title/Summary/Keyword: Nitrate Reduction

Search Result 388, Processing Time 0.033 seconds

Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-l (Shewanella putrefaciens DK-1의 Fe(III) 환원 특성)

  • 조아영;이일규;전은형;안태영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • Microbial Fe(III) reduction is an important factor for biogeochemical cycle in anaerobic environments, especially sediment of freshwater such as lakes, ponds and rivers. In addition, the Fe(III) reduction serves as a model for potential mechanisms for the oxidation of organic compounds and the reduction of toxic heavy metals, such as chrome or uranium. Shewanella putrefaciens DK-1 was a gram-negative, facultative anaerobic Fe(III) reducer and used ferric ion as a terminal electron acceptor for the oxidation of organic compounds to $CO_{2}$ or other oxidized metabolites. The ability of reducing activity and utilization of various electron acceptors and donors for S. putrefaciens DK-1 were investigated. S. putrefaciens DK-1 was capable of using a wide variety of electron acceptor, including $NO_{3}^{-}$, Fe(III), AQDS, and Mn(IV). However, its ability to utilize electron donors was limited. Lactate and formate were used as electron donors but acetate and toluene were not used. Fe(III) reduction of S. putrefaciens DK-l was inhibited by the presence of either $NO_{3}^{-}$ or $NO_{2}^{-}$. Further S. putrefaciens DK-1 used humic acid as an electron acceptor and humic acid was re-oxidized by nitrate. Environmental samples showing the Fe(III)-reducing activity were used to investigate effects of the limiting factors such as carbon, nitrogen and phosphorus on the Fe(III) reducing bacteria. The highest Fe (III) reducing activity was measured, when lactate as a carbon source and S. putrefaciens DK-1 as an Fe(III) reducer added in untreated sediment samples of Cheon-ho and Dae-ho reservoirs.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

The Effects of Calcium Nutrition on the Activities of Lactate Dehydrogenase, Alcohol Dehydrogenase and Other Enzymes in Melon (Cucumis melo L.) Seedlings Subjected to Flooding

  • Lee, Chang-Hee;Park, Man;Kang, Sang-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • With transient flooding followed by poor or slow drainage plant roots may become reduction conditions because the root zone was fully filled with water. This study was examined the effects of calcium treatment in the early growth stage on biochemical changes in leaves and roots of melon (Cucumis melo L.) seedlings kept under flooding condition for 72 h. The activities of lactate dehydrogenase more gradually enhanced in the roots than those of leaves of melon seedlings treated with calcium. The activities of alcohol dehydrogenase associated with alcohol fermentation under low oxygen conditions continuously increased in the leaves and roots of seedlings untreated with calcium under flooding at least 72 h but those was constant within at least 12 h in treated with calcium. These results showed that calcium supplying in the early growth stage mitigated alcohol fermentation of melon seedlings kept under flooding condition for 72 h. Activities of nitrate reductase and acid phosphatase in the leaves and roots of seedlings in treated with calcium somewhat higher than those of non-treated with calcium. The activities of sucrose phosphate synthase and fructose-1,6-bisphosphatase of leaves of seedlings in treated with calcium more higher than those of non-treated with calcium. These results indicated that calcium nutrition mitigate the reduction of activities of some enzymes of melon seedling kept under flooding condition for 72 h.

Isolation and Characterization of Ammonia-removing Bacteria from a Food-wastewater Treatment Facility (식품 폐수 처리 시설에서 암모니아성 악취제거 세균의 분리 및 특성 분석)

  • Oh, Kyoung-Hee;Choi, In-Hak;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • The bacteria responsible for the reduction of ammonia concentration in a food-wastewater treatment facility were isolated and their characteristics were analyzed. The isolated bacteria were closely related to the bacteria belonging to genus Citrobacter, Enterobacter, Buttiauxella, Shigella, and Aeromonas, which were found in gut of animals, indicating the isolated bacteria may come from the butchery-byproduct of pigs which is the main component of wastewater. When we monitored the concentration of nitrite and nitrate in the process, it was relatively constant, indicating the isolated bacteria reduce ammonia concentration through ammonia assimilation. Based on the removal efficiency of ammonia by the isolated bacteria, we concluded that they play a role in the reduction of odorous compounds.

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Characterization of Campylobacters Newly Isolated from Swine Gastric Mucosa

  • Lee, Yeon-Hee;Lee, Jin-Hui;Cho, Hyun-Joo;Shin, En-Joo;Park, Jong-Hwan;Park, Jae-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.778-783
    • /
    • 1999
  • Campylobacter is a pathogen for both humans and animals that can be transferred from animals to humans. Four isolates, which grew under 5-10% $CO_2$ and had small and translucent colonies, were obtained from swine gastric mucosa and characterized using various methods. These bacteria were gram negative, spirally shaped with round ends. One or two non-sheathed polar flagella were observed under electron microscopy. A PCR with species-specific protein (SSP) primers for 16S rRNA gene in Campylobacter produced a typical 462 bp fragment. The isolates had various biochemical and molecular characteristics which differentiated them from other Campylobacters. The isolates were catalase and oxidase positive, urease (rapid) negative, nitrate reduction positive, indoxyl acetate hydrolysis positive, y-glutamyl transpeptidase negative, and alkaline phosphatase negative. All four isolates showed growth at $37^{\circ}C{\;}and{\;}42^{\circ}C{\;}but{\;}not{\;}at{\;}25^{\circ}C$, were resistant to cephalotin and cefoperazone, and susceptible to carbenicillin. The isolates showed various results in the reduction of chloride to triphenyl tetrazolium (TTC) and a susceptibility to nalidixic acid. Western blot analysis of these isolates with antiserum raised against one isolate showed different patterns from those of reference strains. A dendrogram drawn with the RAPD results showed that these isolates belonged to a new Campylobacter spp. group different from those of C. jejuni, C. doylei, C. lari, and C. coli.

  • PDF

A Study of Mercury-Cathode Membrane Cells for the Electrolytic Reduction of Uranyl Solutions (膈膜電解槽와 水銀陰極에 依한 Uranyl 溶液의 電解還元)

  • Kim, Jae-Won;Simard, R.
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1962
  • Bench-scale horizontal cation-permeable membrane cells were constructed to study the effect of cell dimensions on the efficiency of electrolytic reduction of uranyl sulphate solutions flowing continuously over a mercury cathode. Current efficiencies were determined for various cells having length-to-width ratios of 10/1 to 40/1, and for catholyte solutions containing from 20 to 100g $U_3O_8/l$ in sulphuric acid. Optimum current density and solution flowrate were determined under these conditions. The effects of the nitrate and chloride ions were briefly examined.

  • PDF

Study on therapeutic application of toxicity of Uranylnitrate in rats (천연 우라늄 독성에 관한 치료 연구)

  • Ryu, Yong-Wun;Lee, Jhin-Oh;Yun, Taik-Koo
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1987
  • The present study has determined BUN, createinine, c-AMP and $PGE_2$ activities as a clinical signs of radiation toxicity caused by uranylnitrate in rats. The significant increasing of $PGE_2$ concentration in plasma between the administration of uranylnitrate and lead nitrate were shown radiotoxic in nature on the effect of radiation energy. The reduction of PGE activities in plasma in uranylnitrate treated rats after furosemide, aldosterone and glucagone I.P. administration have observed the stimulating effect of uranium excretion into cells.

  • PDF

Hydrocarbon production and nitrogen/phosphorus removal from piggery wastewater by cultivation of Botryococcus braunii

  • Sim, Sang-Jun;An, Jin-Yeong;Gong, Gyeong-Taek;Kim, Byeong-U;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.249-252
    • /
    • 2001
  • The green algae, Botryococcus braunii, has an unusually high hydrocarbon content, ranging from 15 to 75% of dry weight, as a long-chain unsaturated hydrocarbon. It has a potential as a renewable source of chemical feedstocks or fuels. The commercial production of hydrocarbon by B. braunii has not been achieved mainly due to their economic and several technical barriers. The B. braunii cultivation with piggery wastewater could alleviate to economic problems by the reduction of inorganic nutrients, mainly nitrogen and phosphorus from wastewater. We have been studying cultivation of B. braunii in the pretreated piggery wastewater by a MBR(membrane bioreactod, containing about 3000 mg $NO^3$ /L, 15 mg $NH_4\;^+/L$, 3 mg P/L, and others. The purpose of this study was to develop a continuous culture system in piggery wastewater and nitrogen-limited chemostat.

  • PDF

Influences of NiO Precursors on Microstructures and Conductivities of Ni/YSZ Anodes in SOFCs (NiO 전구체가 고체산화물 연료전지 Ni/YSZ 음극의 미세구조와 전기전도도에 미치는 영향)

  • Jeong, Youn-Ji;Lee, Hai-Won;Han, Kyoung-R.;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.402-407
    • /
    • 2006
  • NiO/YSZ(70 wt%NiO) composite powders were prepared by ball-milling of 8YSZ and NiO precursors, dried and then followed by calcination. The approach was to combine acidic $Ni(NO_3)_2{\cdot}6H_2O$ and basic $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$ via acid-base reaction as a mixed NiO precursor. Their effects were studied in the aspects of DSC, microstructure, porosity, and electrical conductivity. Ni/YSZ composite of 1N9C (1 mole NiO from the nitrate and 9 moles of NiO from the carbonate) was prepared by consolidation at $1400^{\circ}C$ for 3 h, and then followed by reduction at $1000^{\circ}C$ for 3 h under flowing of 6% $H_2/N_2$. It showed a homogeneous microstructure with ${\sim}20%$ porosity and 1880 S/cm at $1000^{\circ}C$.