• Title/Summary/Keyword: Nickel ions

Search Result 155, Processing Time 0.022 seconds

Adsorption Characteristics of Nickel, Zinc and Cadmium Ions using Alginate Bead (Alginate Bead를 이용한 니켈, 아연, 카드뮴의 흡착특성에 관한 연구)

  • Jung, Heung-Joe
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This study investigated the adsorption characteristics of nickel, zinc and cadmium ions from the aqueous solution onto the alginate bead. Adsorption equilibrium capacities of the heavy metal ions increased with increasing initial pH of the solution. The adsorption equilibrium isotherm of the heavy metal ions was well represented by Langmuir equation. The magnitude of adsorption capacity of the heavy metal ions onto alginate bead was the order of cadmium > zinc > nickel. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the heavy metal ions. The internal diffusion coefficient of the heavy metal ions in the intraparticle were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model (SDM) and pore diffusion model (PDM). The internal diffusion of the heavy metal ions in the intraparticles was explained by PDM.

Desorption and Regeneration Characteristics for Nickel Ions Loaded onto Sericite Using HNO3 Solution

  • Jeon, Choong
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.347-350
    • /
    • 2013
  • Desorption characteristics for ions adsorbed onto sericite was performed by means of $HNO_3$ solution which was selected as the best desorbing agent in the previous work. Elution of nickel ions adsorbed onto sericite using $HNO_3$ solution was confirmed by means of scanning electron microscopy (SEM) & energy dispersive X-ray spectroscopy (EDX) analysis. Desorption efficiency for nickel ions was 100% at the 20 mM of concentration. Also, nickel ions was completely desorbed within 1.0 of S/L (mg/mL) ratio which is defined as the ratio of adding amount of adsorbent and volume of desorbing agent and desorption process was quickly carried out within 60min. Finally, removal efficiency of reused sericite for nickel ions was constantly maintained until the 4th cycle.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater

  • Oh, Eunjoo;Kim, Joohyeong;Ryu, Jun Hee;Min, Kyung Jin;Shin, Hyun-Gon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.201-206
    • /
    • 2020
  • Electrodialysis (ED) is used in wastewater treatment, during the processing and recovery of beneficial materials, to produce usable water. In this study, sulfate and chlorine ions, which are the anions majorly used for electroplating, were studied as factors affecting the recovery of copper, nickel and water from wastewater by electrodialysis. Although the removal rates of copper and nickel ions were slightly higher with the use of chlorine ions than of sulfate ions, the removal efficiencies were above 99.9% under all experimental conditions. The metal ions of the plating wastewater flowed through the ion exchange membrane of the diluate tank and the concentrate tank while all the water moved together due to electro-osmosis. The migration of water from the diluate tank to the concentrate tank was higher in the presence of a monovalent chloride ion compared to that of a divalent sulfate ion. When sulfate was the anion used, the recoveries of copper and nickel increased by about 25% and 30%, respectively, as compared to the chloride ion. Therefore, when divalent ions such as sulfate are present in the electrodialysis, it is possible to reduce the movement amount of water and highly concentrate the copper and nickel in the plating wastewater.

Manufacture of Vanadium pentoxide and nickel sulfate from heavy oil fly ash

  • Park, Gyeong-Ho
    • Resources Recycling
    • /
    • v.2 no.4
    • /
    • pp.23-26
    • /
    • 1993
  • This work is carried out to develop the recovery process of vanadium as vanadium pentoxide and nickel as nickel sulphate from the leaching solution of heavy oil fly ash. First, sodium chlorate solution was added to the leaching solution to oxidize vanadium ions. With adjusting pH of the solution and heating, vanadium ions(V) is hydrated and precipitated as red cake of $V_2O_5$ from the solution. After recovering vanadium, nickel is recovered as ammonium nickel sulfate with crystallization process. From this nickel salt, nickel sulfate which meets the specifications for the electroplating industry can be produced economically. More than 85% of vana-dium and nickel in the fly ash are recovered in this process.

  • PDF

Treatment of Nickel Ions in Water Phase Using Biochar Prepared from Liriodendron tulipifera L. (백합나무 유래 biochar를 이용한 수중에서 니켈 이온의 처리)

  • Choi, Suk Soon;Choi, Jung Hoon;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.529-533
    • /
    • 2017
  • In this work, a new type of biosorbent was prepared from the biochar of Liriodendron tulipifera L. by adding an activation process using water vapor. By using the biosorbent, the removal characteristics of nikel ions in the water phase were investigated. When the equilibrium experiments to remove both 5 and 10 mg/L of nikel ions were performed, the adsorption amount of nickel ions was 4.2 and 5.4 mg/g, respectively. Also, the optimal initial pH was 6 to increase the removal efficiency with respect to two different nickel concentrations of 5 and 10 mg/L. To enhance the removal efficiency of 10 mg/L of nikel ions, a chemical treatment using critic acid was applied for the biosorbent. In addition, 100% removal efficiency was observed for 10 mg/L of nikel ions when the experiment was conducted for 2 h using the modified biosorbent treated by 4 M of critic acid. The results of desorption experiment to recover nikel ions indicated that 0.1 M of nitrilotriacetic acid (NTA) was selected as the optimal desorption agent. Consequently, these experimental results could be employed as an economical and environmentally friendly technology for the development of nickel removal processes.

Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube (활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.410-416
    • /
    • 2018
  • This experiment was carried out with the purpose of testing nickel and copper adsorption abilities of multi wall carbon nanotube (MWCNT) and activated carbon. In the acidic condition, only MWCNT was effective for removing nickel and copper ion in the aqueous phase while activated carbon rarely remove them. The MWCNT and heavy metals adsorption reaction followed pseudo-first order kinetic. When the initial pH value was neutral (pH=7), nickel was rapidly removed by MWCNT and activated carbon in 4 hr (99.02 %, 80.30 %). Also, copper ion was rapidly removed by both adsorbents in 4 hr when the initial pH was 7 (100 %, 99.73 %). Increasing of adsorbent dosages affect the pH evolution and heavy metal ions removal (0 ~ 99%). Also, oxidation pretreatment enhanced the adsorption efficiency of MWCNT.

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Concentration and separation of nickel from copper alloy dross using chelating regin (킬레이트 수지를 이용한 구리 합금 부산물에서의 니켈의 농축 및 분리)

  • Lee, Jung-Il;Kong, Man-Sik;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • Separation/recovery of valuable metals such as nickel or tin from copper based alloys has recently attracted from the viewpoints of environmental protection and resource recycling. In this report, preliminary study on concentration and separation of nickel from copper based alloy dross using selective adsorption by chelate resin was performed. The chelate resin used in this study has absorbed copper ions more easily than nickel ions in the metal solution, which could allow the concentration/separation of the nickel from the copper base alloy solution. The final molar ratios of Ni and Cu ions in the two concentrated solutions were 70 and 99 % respectively after three-time flowing the solution through the chelate resin column.