• Title/Summary/Keyword: Nickel film

Search Result 244, Processing Time 0.023 seconds

A Study on the Inhibition Effect of Metal Corrosion Using Organic Compound Containing an Amine Group (아민기를 가진 유기물을 사용한 금속의 부식억제효과)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.361-369
    • /
    • 2010
  • A study on the corrosion inhibition of metals is important in many industrial applications (carbon steel, copper, aluminum, SUS 304, nickel). In this study, we investigated the C-V diagrams related to the surface corrosion of metals. It was observed through the SEM that the surface corrosion state of the various metals had the corrosion potential by the scan rate and the organic inhibitor containing an amine group. We determined to measure cyclic voltammetry using the three-electrode system. The measurement of oxidation and reduction ranged from -1350mV to 1650mV. The scan rate was 50, 100, 150, and 200mV/s. It turned out that the C-V characterization of SUS 304 was irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic inhibitors, the adsorption film was constituted, and the passive phenomena happened. As a result, it was revealed that the inhibition effect of metal corrosion depends on the molecular interaction, and the interaction has influence on the adsorption complex.

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC (고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.347-360
    • /
    • 2021
  • Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS (카복실레이트계 시멘트의 접착력에 관한 비교 연구)

  • Lee, Han-Moo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

Gold Colored Coating of TiO2 thin film on Nickel-Silver by Sol-Gel Process (양백에 코팅된 비정질 TiO2 박막의 특성에 관한 연구)

  • Lim, Yongmu;Kim, Sangmoon;Shim, Moonsik;Jang, Heejin;Shin, Jongyoon;Hwang, Kyuseog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.51-56
    • /
    • 1999
  • $TiO_2$ thin films were spin coated on commercial Nickel-Silver with 2%Ti-naphthanate toluene solution by sol-gel process. The thin films were heat-treated at $500^{\circ}C$ for 2min and then decorative-protective coating was obtained. The conditions for gold colored coating, and the morphology, microstructure and color of the coating surface were have been characterized by Optical microscope, Photospectrometer and XRD. The heating temperature of colored-$TiO_2$ coating was $500^{\circ}C$ and was preferable. The average thickness of 1 time coating was $0.24{\mu}m$ and the total thickness increased linearly as a function of the coating time. The color of amorphous colored-$TiO_2$ coating was changed from gold to dark redish gold with coating time. 'L' as lightness and 'b' were decreased to red, but 'a' was decreased to blue after increase with coating time.

  • PDF

Fabrication and Characteristics of Shielding Effects for the Complex Conductive Filler (복합 전도성 필러의 제작과 전자파 차폐 특성)

  • Park, Ju-Tae;Park, Jae-Sung;Do, Young-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.122-127
    • /
    • 2006
  • A series of conductive filler were prepared with electroless plating method. Base conductive materials of the filler were nickel and copper. The cores were prepared with Nylon 6 and rayon in different aspect ratio. Also, various complexes were made with ABS resin and conductive filler with different filler feed ratio. The conductivity of the filler was measured with conductivity analyzer and the size distributions of fillers was measured with laser particle size analyzer. Electromagnetic wave shielding efficiency of each complex film was measured with flange circular coaxial transmission line sample holder within the 1MHz$\sim$1GHz bandwidth range. From this study, the conductivity of filers surpass that of other carbon films. It is available that the filler made of fibrous materials can be applied in plastic molding industry of electric appliances as a EMI filler.

A Surface Etching for Synthetic Diamonds with Nano-Thick Ni Films and Low Temperature Annealing

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.279-283
    • /
    • 2015
  • Ni (100 nm thick) was deposited onto synthesized diamonds to fabricate etched diamonds. Next, those diamonds were annealed at varying temperatures ($400{\sim}1200^{\circ}C$) for 30 minutes and then immersed in 30 wt% $HNO_3$ to remove the Ni layers. The etched properties of the diamonds were examined with FE-SEM, micro-Raman, and VSM. The FE-SEM results showed that the Ni agglomerated at a low annealing temperature (${\sim}400^{\circ}C$), and self-aligned hemisphere dots formed at an annealing temperature of $800^{\circ}C$. Those dots became smaller with a bimodal distribution as the annealing temperature increased. After stripping the Ni layers, etch pits and trigons formed with annealing temperatures above $400^{\circ}C$ on the surface of the diamonds. However, surface graphite layers existed above $1000^{\circ}C$. The B-H loop results showed that the coercivity of the samples increased to 320 Oe (from 37 Oe) when the annealing temperature increased to $600^{\circ}C$ and then, decreased to 150 Oe with elevated annealing temperatures. This result indicates that the coercivity was affected by magnetic domain pinning at temperatures below $600^{\circ}C$ and single domain behavior at elevated temperatures above $800^{\circ}C$ consistent with the microstructure results. Thus, the results of this study show that the surface of diamonds can be etched.

High Temperature Oxidation and Sulfidation of Ni-15at.%W Coatings

  • Kim Chanwou;You Teayoul;Shapovalov Yuriy;Ko Jaehwang;Lee Dongbok;Lee Kyuhwan;Chang Doyon;Kim Dongsoo;Kwon Sikchol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Ni-15at.% W coatings with film thicknesses of 20-40 ㎛ were electroplated on a steel substrate, and their oxidation behavior was investigated at 700 and 800℃ in air. For comparison, a pure Ni coating and a bulk Ni were also oxidized. The Ni-15at.%W coating displayed the worst oxidation resistance, due to the formation of less-protective NiO, Fe₂O₃, NiFe₂O₄ and NiWO₄. The corrosion behavior Ni-15at.%W coatings electroplated on a steel substrate was similarly investigated at 700 and 800℃ in the Ar-l%SO₂ atmosphere. For comparison, the uncoated steel substrate was also corrosion-tested in the Ar-l %SO₂ atmosphere. Severe scale spallation and the internal corrosion of the steel that occurred in the uncoated substrate were not observed in the coated specimen. However, it seemed that the Ni-15at.%W coating cannot be a potential candidate as a sulfidation-resistant coating, due to the formation of less-protective NiO, NiS, WO₃ and NiWO₄.

Investigation of Ni Silicide formation at Ni/Cu/Ag Contact for Low Cost of High Efficiency Solar Cell (고효율 태양전지의 저가화를 위한 Ni/Cu/Ag 전극의 Ni Silicide 형성에 관한 연구)

  • Kim, Jong-Min;Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.230-234
    • /
    • 2009
  • It is significant technique to increase competitiveness that solar cells have a high energy conversion efficiency and cost effectiveness. When making high efficiency crystalline Si solar cells, evaporated Ti/Pd/Ag contact system is widely used in order to reduce the electrical resistance of the contact fingers. However, the evaporation process is no applicable to mass production because high vacuum is needed. Furthermore, those metals are too expensive to be applied for terrestrial applications. Ni/Cu/Ag contact system of silicon solar cells offers a relatively inexpensive method of making electrical contact. Ni silicide formation is one of the indispensable techniques for Ni/Cu/Ag contact sytem. Ni was electroless plated on the front grid pattern, After Ni electroless plating, the cells were annealed by RTP(Rapid Thermal Process). Ni silicide(NiSi) has certain advantages over Ti silicide($TiSi_2$), lower temperature anneal, one step anneal, low resistivity, low silicon consumption, low film stress, absence of reaction between the annealing ambient. Ni/Cu/Ag metallization scheme is an important process in the direction of cost reduction for solar cells of high efficiency. In this article we shall report an investigation of rapid thermal silicidation of nickel on silngle crystalline silicon wafers in the annealing range of $350-390^{\circ}C$. The samples annealed at temperatures from 350 to $390^{\circ}C$ have been analyzed by SEM(Scanning Electron Microscopy).

  • PDF

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar;Mustafa, Chand Mohammad;Islam, Md Mayeedul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2017
  • Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.