• 제목/요약/키워드: Nickel content

검색결과 245건 처리시간 0.026초

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • 한국분말재료학회지
    • /
    • 제23권3호
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.

에너지절약형 동(Cu)전해채취 및 전류밀도의 영향 (The effects of current density and nickel content on copper electrowinning by energy saving system)

  • 이후인;이재천;박진태;김민석;손정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.386-387
    • /
    • 2006
  • This study is about the recycling technology of scrap a PCB(printed circuit board) produced in home appliances or automobile industry. And we develop the recycling technology of cooper (Cu)which is contained to leaching solution. In stead of electrolytic collecting in existing sulphuric atmosphere, we apply process using the ammonia solution which is used in economizing energy. So m the process of electrolyzing scrap a PCB through the leaching and separation, we examine the effect of the nickel contained to the solution and the cooper degree of purity which is changed according to current density.

  • PDF

Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동 (Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal)

  • 문병기;최철진;박원욱
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

구상흑연주철의 경화능 (Hardenability of Ductile Cast Iron)

  • 이영호
    • 열처리공학회지
    • /
    • 제1권1호
    • /
    • pp.13-23
    • /
    • 1988
  • The hardenability of alloyed ductile cast irons was studied for 54 different alloy compositions obtained from eight commercial and laboratory foundries. The alloying elements investigated for their effects on hardenability were Si(2.0 to 3.0%), Mn(0.0 to 0.8%), Mo(0.0 to 0.6%), Cu(0.0 to 1.5%), and Ni(0.0 to 1.5%). Two hardenability criteria, a first-pearlite hardenability criterion and a half-hard hardenability criterion, were used to determine hardenability of ductile irons. Prediction models for each hardenability criterion were developed by multiple regression analysis and were well agreed with previous experimental results. Molybdenum was the most potent hardenability promoting element followed by manganese, copper and nickel ; silicon had little effect on hardenability and reduced the hardenability as silicon content increased. When alloying elements were presented in combination, strong synergistic effects on the hardenability were observed especially between molybdenum, copper and nickel. The hardenability of ductile iron was strongly influenced by austenitizing temperature. Increasing austenitizing temperature up to $955^{\circ}C$, hardenability increased gradually but decreasing rate and then decreased as temperature increased above $955^{\circ}C$. Unless reducing segregation by very long-time annealing treatment, the hardenability of ductile iron was not significantly influenced by segregation of alloying elements.

  • PDF

Effect of Copper Substitution on Structural and Magnetic Properties of NiZn Ferrite Nanopowders

  • Niyaifar, Mohammad;Shalilian, Hoda;Hasanpour, Ahmad;Mohammadpour, Hory
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.391-394
    • /
    • 2013
  • In this study, nickel-zinc ferrite nanoparticles, with the chemical formula of $Ni_{0.3}Zn_{0.7-x}Cu_xFe_2O_4$ (where x = 0.1- 0.6 by step 0.1), were fabricated by the sol-gel method. The effect of copper substitution on the phase formation and crystal structure of the sample was investigated by X-ray diffraction (XRD), thermo-gravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD result shows that due to the reduction of Zn content,the crystallite size of the sample increased. The results of the vibration sample magnetometer (VSM) exhibit an increase in saturation magnetization value (Ms) for samples with x ${\leq}$ 0.3 and a linear decrease for samples with x > 0.3. The variation of saturation magnetization and coercivity of the samples were then studied.

Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구 (The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni)

  • 백응률;오석중
    • 한국주조공학회지
    • /
    • 제26권4호
    • /
    • pp.180-183
    • /
    • 2006
  • NICI재의 미세조직 및 기계적 성질에 미치는 Ni 첨가원소의 영향을 연구하였다. 선재공장의 열간압연롤재로서의 NICI재는 내열 피로크랙성, 경도값, 인장성질, 내마모성이 매우 중요하다. 주방상태에서 4% Ni 첨가로 주요 기지상인 퍼얼라이트상이 베이나이트상으로 변화되었다. 베이나이트상을 주요 기지상으로 가지는 4% Ni 첨가 NICl재는 퍼얼라이트상을 주요 기지상으로 가지는 통상의 NICI재에 비해서 경도값(HRC 48) 및 인장강도값($72\;kg/mm^2$)이 우수하였으며, 이는 선재압연롤 재료로서 우수한 성능을 발휘할 수 있을 것으로 예측된다.

Ni-Mn 전착층의 기계적 성질에 미치는 공정조건의 영향 (Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions)

  • 신지웅;양승기;황운석
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.102-106
    • /
    • 2014
  • Nickel electrodeposition from sulfamate bath has several benefits such as low internal stress, high current density and good ductility. In nickel deposited layers, sulfur induces high temperature embrittlement, as Ni-S compound has a low melting temperature. To overcome high temperature embrittlement problem, adding manganese is one of the good methods. Manganese makes Mn-S compound having a high melting temperature above $1500^{\circ}C$. In this work, the mechanical properties of Ni-Mn deposited layers were investigated by using various process variables such as concentration of Mn$(NH_2SO_3)_2$, current density, and bath temperature. As the Mn content of electrodeposited layers was increased, internal stress and hardness were increased. By increasing current density, internal stress increased, but hardness decreased. With increasing the bath temperature from 55 to $70^{\circ}C$, internal stress of Ni deposit layers decreased, but hardness didn't change by bath temperature. It was likely that eutectoid manganese led to lattice deformation, and the lattice deformation increased hardness and internal stress in Ni-Mn layers. Increasing current density and decreasing bath temperature would increase a mount of $H_2$ absorption, which was a cause for the rise of internal stress.

무전해 니켈도금과 무전해복합도금(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond)의 내마모성 비교 (The Wear Resistance of Electroless Nickel and Electroless Composite(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond) Coating Layers)

  • 김만;장도연;정용수;노병호;이규환
    • 한국표면공학회지
    • /
    • 제27권4호
    • /
    • pp.193-206
    • /
    • 1994
  • A wear behavior of electroless (Ni-P-X, X: SiC, $Al_2O_3$, Diamond) composite coating layers, formed under various conditions on commerical grade low carbon steel, has been investigated using Taber abrasion tester and scanning electron microscope. Several factors, which are type of particles, co-deposited content, particle size, distribution of particles and heat-treatment, influenced the wear resistance. The wear resistance of the composited coating layers after heat-treatment at $400^{\circ}C$ for 1 hr was increased 70 times with diamond, 15 times with SiC and 8 times with $Al_2O_3$, compared with the electroless nickel plating layer without heat-treatment.

  • PDF

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah

  • Lee, Dong-Geun;Ahn, Byeong-Min;Ahn, Cheol-Woo;Choi, Joon-Hwan;Lee, Dae-Han;Lim, Sung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.398-405
    • /
    • 2021
  • To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.

Sn-3Ag-0.5Cu solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구 (A study of properties for phosphorous content of ENIG against Sn-3Ag-0.5Cu solders)

  • 신안섭;옥대율;정기호;박창식;김민주;허철호;공진호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.24-24
    • /
    • 2009
  • ENIG(Electroless Nickel Immersion Gold) is the surface treatment method that is used most widely at fine pitch's SMT and BGA packaging process. In this paper, we have studied the effect of P content variation during ENIG process on those phenomena related to the solder joint. The effect of P content was discussed using the results obtained from FE-SEM, EPMA, EDS and FIB. Finally, it was concluded that the more P-content in Ni layer, the thicker P-rich layer.

  • PDF