• Title/Summary/Keyword: Nickel Silver

Search Result 70, Processing Time 0.024 seconds

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode (은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Characterization of Nickel-coated Silver Nanowire Flexible Transparent Electrodes with a Random-mesh Structure Formed by Bubble Control (거품 제어에 의해 형성된 무정형 그물망 구조의 니켈이 코팅된 은나노와이어 유연 투명전극의 특성 분석)

  • Park, Jong Seol;Park, Tae Gon;Park, Jin Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.36-42
    • /
    • 2020
  • Silver nanowire (AgNW) random-meshes with high transmittance, low sheet resistance, and high oxidation stability and flexibility were fabricated using solution-based processes. The random-mesh structure was obtained by forming bubbles whose sizes and densities were controlled using a corona treatment of polyethylene terephthalate (PET) substrates. To reduce the sheet resistance of the fabricated AgNW electrode, a washing process using ethanol solution was performed. In addition, nickel (Ni) was coated on AgNW to improve resistance to oxidation. The effects of corona treatment and Ni-coating on the transmittance, sheet resistance, oxidation stability, and flexibility of the AgNW electrodes were investigated.

Production of Ag- Ni fine powder by coprecipitation (공침법을 이용한 Ag-Ni 초미분 제조)

  • Kim, Bong-Seo;Woo, Byung-Chul;Byun, Woo-Bong;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1342-1344
    • /
    • 1994
  • Silver-Nickel alloy has been used as a electrical contact material for low voltage, low current. Since the solubility between Ag and Ni is very low, it is difficult to produce Ag-Ni alloy by using conventional melting method and disperse Ni powder homogeneously in Ag matrix. In this study we have been produced fine Ag-Ni alloy powder by using coprecipitation method. Firstly, we have produced silver-nickel nitrate solution by dissolving the Ag and Ni ingot in nitric acid solution and then, coprecipitate (Ag, Ni)carbonate dropping Ag-Ni nitrate solution to sodium carbonate solution. (Ag, Ni) carbonate is heat-treated in $H_2$ atmosphere, $400^{\circ}C$ and it has been analysed by TGA, SEM, XRD, ICP. It is represented Silver-Nickel alloy powder in the particle range of $0.1{\sim}0.5{\mu}m$.

  • PDF

Analysis of Ni/Cu Metallization to Investigate an Adhesive Front Contact for Crystalline-Silicon Solar Cells

  • Lee, Sang Hee;Rehman, Atteq ur;Shin, Eun Gu;Lee, Doo Won;Lee, Soo Hong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 2015
  • Developing a metallization that has low cost and high efficiency is essential in solar-cell industries, to replace expensive silver-based metallization. Ni/Cu two-step metallization is one way to reduce the cost of solar cells, because the price of copper is about 100 times less than that of silver. Alkaline electroless plating was used for depositing nickel seed layers on the front electrode area. Prior to the nickel deposition process, 2% HF solution was used to remove native oxide, which disturbs uniform nickel plating. In the subsequent step, a nickel sintering process was carried out in $N_2$ gas atmosphere; however, copper was plated by light-induced plating (LIP). Plated nickel has different properties under different bath conditions because nickel electroless plating is a completely chemical process. In this paper, plating bath conditions such as pH and temperature were varied, and the metal layer's structure was analyzed to investigate the adhesion of Ni/Cu metallization. Average adhesion values in the range of 0.2-0.49 N/mm were achieved for samples with no nickel sintering process.

Improvement for Shielding Effectiveness of EMI Shield Layers using Conformal Spray Coating Scheme (콘포멀 스프레이 코팅으로 형성한 EMI 차단막의 차폐효과 개선)

  • Hur, Jung;Lee, Won-Hui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.107-112
    • /
    • 2018
  • Shielding effectiveness (SE) improvement with EMI shield layers fabricated by conformal spray coating system was studied. Silver or Nickel powder filled acrylic resin were sprayed on the samples. We compared the performance with the viscosity of 400 cPs and 100 cPs cases. The thickness range of the coating layer was 20 to 50 um for the silver, 60 to 120 um for the nickel. The shielding effectiveness was measured by ASTM D4935 using coaxial type TEM-cell. The silver-filled resin showed much better performance than that of the nickel-filled resin. The shielding effectiveness increased almost proportional to the thickness of the coating layers until being saturated around 63 dB for the silver-layer or around 34 dB for the nickel-layer. The best performance measured in this study was the shielding effectiveness of 63 dB with $35{\mu}m-thick$ of silver-layer.

Properties of the Master Alloys for White Gold Products with Silicon Contents (백색금 합금용 모합금의 실리콘 함량에 따른 물성변화)

  • Song, Jeongho;Noh, Yunyoung;Lee, Hyeonwoo;Choi, Minkyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.90-94
    • /
    • 2015
  • We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VIS-NIR-color meter. We observed $NiSi_x$ residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of $NiSi_x$ through XRD after aqua-regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.

A STUDY ON THE GALVANIC CORROSION OF TITANIUM USING THE IMMERSION AND ELECTROCHEMICAL METHOD (침적법과 전기화학법을 이용한 티타늄의 갈바닉 부식에 관한 연구)

  • Kay, Kee-Sung;Chung, Chae-Heon;Kang, Dong-Wan;Kim, Byeong-Ok;Hwang, Ho-Gil;Ko, Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.584-609
    • /
    • 1995
  • The purpose of this study was to evaluate the difference of the galvanic corrosion behaviour of the titanium in contact with gold alloy, silva-palladium alloy, and nickel-chromium alloy using the immersion and electrochemical method. And the effects of galvallit couples between titanium and the dental alloys were assessed for their usefulness as materials for superstructure. The immersion method was performed by measuring the amount of metal elementsreleased by Inductivey coupled plasma emission spectroscopy(ICPES) The specimen of fifteen titanium plates, the five gold alloy, five silver-palladium, five nickel-chromium plates, and twenty acrylic resin plates ware fabricated, and also the specimen of sixty titanium plugs, the thirty gold alloy, thirty silver-palladium, and nickelc-hromium plugs were made. Thereafter, each plug of gold alloy, silver-palladium, and nickel-chromium inserted into the the titanium and acrylic resin plate, and also titanium plug inserted into the acrylic resin plate. The combination specimens uf galvanic couples immersed in 70m1 artificial saliva solution, and also specimens of four type alloy(that is, titanium, gold, silver-palladium and nickel-chromium alloy) plugs were immersed solely in 70m1 artificial sativa solution. The amount of metal elements released was observed during 21 weeks in the interval of each seven week. The electrochemical method was performed using computer-controlled potentiosta(Autostat 251. Sycopel Sicentific Ltd., U.K). The wax patterns(diameter 11.0mm, thickness,in 1.5mm) of four dental casting alloys were casted by centrifugal method and embedded in self-curing acrylic resin to be about $1.0cm^2$ of exposed surface area. Embedded specimens were polished with silicone carbide paper to #2,000, and ultrasonically cleaned. The working electrode is the specimen of four dental casting alloys, the reference electrode is a saturated calmel electrode(SCE) and the ounter electrode is made of platinum plate. In the artificial saliva solution, the potential scanning was carried out starting from-700mV(SCE) TO +1,000mV(SCE) and the scan rate was 75mV/min. Each polarization curve of alloy was recorded automatically on a logrithmic graphic paper by XY recorder. From the polarization curves of each galvanic couple, corrosion potential and corrosion rates, that is, corrosion density were compared and order of corrosion tendency was determined. From the experiments, the following results were obtained : 1. In the case of immersing titanium, gold alloy, silver-palladium alloy, and nickel-chromium alloysolely in the artificial saliva solution(group 1, 2, 3, and 4), the total amount of metal elements released was that group 4 was greater about 2, 3 times than group 3, and about 7.8 times than group 2. In the case of group 1, the amount of titanium released was not found after 8 week(p<0.001). 2. In the case of galvanic couples of titanium in contact with alloy(group 5, 6), the total amount of metal elements released of group 5 and 6 was less than that of group 7, 8, 9, and 10(p<0.05). 3. In the case of galvanic couples of titanium in contact with silver-palladium alloy(group 7, 8), the total amount of metal elements released of group 7 was greater about twice than that of group 5, and that of group 8 was about 14 times than that of group 6(p<0.05). 4. In the case of galvanic couples of titanium in contact with nickel-chromium alloy(group 9, 10), the total amount of metal elements released of group 9 and 10 was greater about 1.8-3.2 times than that of group 7 and 8, and was greater about 4.3~25 times than that of group 5 and 6(p<0.05). 5. In the effect of galvanic corrosion according to the difference of the area ratio of cathode and anode, the total amount of metal elements released was that group 5 was greater about 4 times than group 6, group 8 was greater about twice than group 7, and group 10 was greater about 1.5 times than group 9(p<0.05). 6. In the effect of galvanic corrosion according to the elasped time during 21 week in the interval of each 7 week, the amount of metal elements released was decreased markedly in the case of galvanic couples of the titanium in contact with gold alloy and silver-palladium alloy but the total amount of nickel and beryllium released was not decreased markedly in the case of galvanic couples of the titanium in contact with nickel-chromium alloy(p<0.05). 7. In the case of galvanic couples of titanium in contact with gold alloy, galvanic current was lower than any other galvanic couple. 8. In the case of galvanic couples of titanium in contact with nickel-chromium alloy, galvanic current was highest among other galvanic couples.

  • PDF

Development of Cube Texture in a Silver-Nickel Bi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.47-50
    • /
    • 1999
  • An Ag/Ni bi-layer sheet was fabricated by the combination of powder metallurgy, diffusion bonding, cold rolling and texture annealing processes. After heat treating the cold rolled thin Ag/Ni bi-layer sheet at $900^{\circ}C$ for 4h, the excellent cube texture was developed on nickel surface. Qualitative chemical analysis using EPMA showed that inter diffusions of Ni and Ag in Ag/Ni bi-layer composite were negligible. It showed that Ag can be used as a chemical barrier for Ni and vice versa.

  • PDF

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF