• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.028 seconds

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

Enhancement of oxygen evolution reaction of NiCo LDH nanocrystals using Mo doping (Mo 도핑을 이용한 NiCo LDH 나노결정의 산소발생반응 향상)

  • Kyoungwon Cho;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.92-97
    • /
    • 2024
  • To improve the efficiency of water splitting systems for hydrogen production, the high overvoltages of electrochemical reactions caused by catalysts in the oxygen evolution reaction (OER, Oxygen Evolution Reaction) must be reduced. Among them, LDH (Layered Double Hydroxide) compounds containing transition metal such as Ni, are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metallic porous material, was used as a support, and NiCo LDH (Layered Double Hydroxide) nanocrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the shape, crystal structure, and water decomposition characteristics of the Mo-doped NiCo LDH nanocrystal samples synthesized by doping Mo to improve OER properties were observed.

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Effects of Heat Treatment Conditions on the Interfacial Reactions and Crack Propagation Behaviors in Electroless Ni/electroplated Cr Coatings (열처리 조건에 따른 무전해 Ni/전해 Cr 이중도금의 계면반응 및 균열성장거동 분석)

  • Son, Kirak;Choi, Myung-Hee;Lee, Kyu Hawn;Byon, Eungsun;Rhee, Byong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.69-75
    • /
    • 2016
  • This study investigated the effect of heat treatment conditions not only on the Cr surface crack propagation behaviors but also on the Ni/Cr interfacial reaction characteristics in electroless Ni/electroplated Cr double coating layers on Cu substrate. Clear band layer of Ni-Cr solid solutions were developed at Ni/Cr interface after heat treatment at $750^{\circ}C$ for 6 h. Channeling cracks formed in Cr layer after 1 step heat treatment, that is, heat treatment after Ni/Cr plating, while little channeling cracks formed after 2 step heat treatment, that is, same heat treatments after Ni and Cr plating, respectively, due to residual stress relaxation due to crystallization of Ni layer before Cr plating.

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF

A Study on Trace-metals in Korean Yeongdeok Crab and Russian Snow Crab (영덕대게와 러시아산대게의 체내 미량금속 함량 연구)

  • Kim, Cho-Ryeon;Yoon, Yi-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.147-153
    • /
    • 2011
  • This study is to measure the differences of the trace-metals resulted from the different ecologies, such as nickel(Ni), copper(Cu), zinc(Zn), cadmium(Cd), plumbum(Pb), arsenic(As) and chrome(Cr) remaining in the parts of Korean Yeongdeok Crab (KYC) and Russian Snow Crab (RSC) based on ICP-MS. The recovery rate of each metal certified the reference materials (CRM) was in the average of 81~99%, which corresponded with the level required in Codex. The level of metals in the parts of KYC was in the order of Ni > As > Zn > Cu > Cr > Cd in the both male and female shell; the order of Zn > As > Cu > Cr > Ni > Cd in the leg flesh; the order of Zn > As > Cu > Cr > Cd > Ni in the body flesh; the order of Cu > Zn > As > Cd > Cr > Ni in the gill; the order of Cu > As > Zn > Cd > Ni > Cr in the male hepatopancreas; the order of Cu > Zn > As > Cd > Cr > Ni in the female hepatopancreas, thereby showing some differences. It was revealed that the levels of most metals (nickel, copper, zinc, arsenic and chrome) were similar between KYC and RSC except cadmium which was somewhat lower than that of KYC. However, the cadmium in RSC was discovered in high level in most of the parts, two times higher in the hepatopancreas, and four times in the gill. It was also revealed that the trace metal contents were changing according to the size of KYC; the metals with the highest level of Ni in shell, Zn in leg and body flesh, Cu in gill tended to decrease as growing, whereas the cadmium contents tended to increase overall and accumulated the most in hepatopancreas. The results showed there was a possibility that the phenomenon of bioaccumulation within hepatopancreas would increase as growing.

Effect of $Ca^{++}$ Ionophore and $Ca^{++}$-Channel Blocker on the Mouse Oocyte Maturation (생쥐 난자성숙에 미치는 $Ca^{++}$ Ionophore와 $Ca^{++}$ Channel Blocker의 영향)

  • Bae, In-Ha;Kim, Hyun-Sook;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.105-116
    • /
    • 1992
  • The present study was examined to clarify the role of calcium ion as a factor for the maturation of mouse oocytes. Follicles and cumulus-enclosed oocytes were isolated with two sharp needles under a stereomicroscope from female mouse (ICR) ovaries which were treated PMSG 5 IU 45-46 hours previously. Isolated follicles and cumulus-enclosed oocytes were cultured for 14-16 hours in an organ culture system at $37^{\circ}C$, 5% $CO_2$ in air and 100% humudified in incubator. MHBS was the basic medium used from which A23187, verapamil, $NiCl_{2.}$ $6H_2O$ and $LaCl_{3.}$ $7H_2O$ were added depending on the experimental groups. In follicle- or cumulus-enclosed oocytes wre cultured in these differently treated media. Following results were obtained from the present study. 1. The calcium ionophore A23187 directly or indirectly seems to stimulate GVBD of follicle-enclosed mouse oocytes. Increasing concentration of ionophore A23187 1ed to an increase in oocytes degeneration from the cumulus-enclosed mouse oocytes. 2. The organic $Ca^{++}$ channel blocker, verapamil does not induce GVBD of follicle-enclosed mouse oocytes. Specially, higher dose of 1 mM verapamil induced GVBD of follicle-enclosed mouse oocytes. However, cytoplasm of GVBD oocytes in 1 mM verapamil treated groups appeared shrunk. In the cumulus-enclosed oocytes, polar body formation was reduced in verapamil treated groups and degeneration increased. Verapamil inhibit oocyte maturation (polar body formation). 3. The $Ca^{++}$ inhibitor, Nickel ($NiCl_{2.}$ $6H_2O$) inhibits maturation of the follicle-enclosed oocytes. In the cumulus-enclosed oocytes the progression to MII (PB formation) was reduced and degeneration of mouse oocytes increased as the concentration of $Ni^{++}$ increase. The results indicates that nickel act as an inhibitor of calcium. 4. The $Ca^{++}$ inhibitors, Lanthanum ($LaCl_{3.}$ $7H_2O$) has shown different effect from that of nickel. In follicle-enclosed oocytes, 0.01mM lanthanum induced maturation of mouse oocytes. Polar body formation was reduced in the cumulus-enclosed oocytes all lanthanum treated group.

  • PDF

A Comparative Study on the Surface Patterns Applied to the Traditional Refining and Forge Welding Process Using Iron (철을 이용한 전통 정련·단접 과정 적용 소재별 표면무늬 금속학적 비교 연구)

  • Oh, Min Jee;Cho, Sung Mo;Cho, Nam Chul;Han, Jeong Wook
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.440-452
    • /
    • 2019
  • This research has analyzed SI, the traditional steel, and SIHS(SI + HS), SICS(SI + CS), and SINiS(SI + NiS), the materials that were produced through welding and reprocessing three modern steel- HS, CS, and NiS- that have different carbon content. The purpose of the analyzation was to improve the definition of the multi-layered pattern that appears in the forging process. In observing modified structures on the commissures of three modern steel that have different carbon component to the SI, SINiS produced the most significant multi-layered pattern as well as the excellent welding quality. The excellent welding quality was due to the content of nickel which helped the forge welding process with other materials. There was no significant difference in crystal grain per materials, and SICS showed the highest hardness. At the measurement of EPMA for commissures of the materials, SINiS showed the highest definition of the multi-layered pattern due to the nickel and carbon content. The results above showed that the carbon steel with nickel content is the best material for the most definite multi-layered pattern, expressed from the multi-layered structure which is a characteristic of traditional forge welding technology. It is expected that the result of this research can be utilized as the technical data in further researches regarding the relics excavated from ancient welding process and their multi-layered structure and patterns.

Selective Contact Hole Filling by Electroless Ni Plating (무전해Ni도금에 의한 선택적 CONTACT HOLE 충진)

  • 김영기;우찬희;박종완;이원해
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05b
    • /
    • pp.26-27
    • /
    • 1992
  • The effect of activation and electroless nickel plating conditions on contact properties were investigated for selective electroless nickel plating of Si farers in order to obtain an optimum condition of contact hole filling. According to RCA prosess, p-type si 1 icon (100) surface was cleaned out and activated. The effects of temperture, DMAB concentration, time, and stirring iwere investigated for activation of p-type Si(100) surface. The optimal activation condition obtained was 0.5M HF, 1mM PdCl$_2$, 2mM EDTA, 7$0^{\circ}C$, 90sec under ultrasonic vibration. In electroless nickel plating, the effect of temperature, DMAB concentration, pH, and plating ti me were studied. The optimal plating condition found was 0. 10M NiS0$_4$.$H_2O$, 0.lIM Citrate, pH 6.8, 6$0^{\circ}C$, 30 minutes. The contact resistence of fi]ms wascomparatively low. It took 30 minutes to obtain 1$\mu$m thick film with 8$\mu$M DMAB concentration. The film surface roughness was improved with increasing temperature and decreasing pH of the plating solution. The best quality of the film was obtained with the condition of temperature 6$0^{\circ}C$ and pH 6.8. The micro-victors hardness of film was about 600Hv and was decreased wi th increasing particle size of plating layer.

  • PDF

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.