Effect of $Ca^{++}$ Ionophore and $Ca^{++}$-Channel Blocker on the Mouse Oocyte Maturation

생쥐 난자성숙에 미치는 $Ca^{++}$ Ionophore와 $Ca^{++}$ Channel Blocker의 영향

  • Bae, In-Ha (Department of Biology, College of Natural Sciences, Sungshin Women's University) ;
  • Kim, Hyun-Sook (Department of Biology, College of Natural Sciences, Sungshin Women's University) ;
  • Kim, Moon-Kyoo (Department of Biology, College of Natural Sciences, Hanyang University)
  • 배인하 (성신여자대학교 자연과학대학 생물학과) ;
  • 김현숙 (성신여자대학교 자연과학대학 생물학과) ;
  • 김문규 (한양대학교 자연과학대학 생물학과)
  • Published : 1992.12.31

Abstract

The present study was examined to clarify the role of calcium ion as a factor for the maturation of mouse oocytes. Follicles and cumulus-enclosed oocytes were isolated with two sharp needles under a stereomicroscope from female mouse (ICR) ovaries which were treated PMSG 5 IU 45-46 hours previously. Isolated follicles and cumulus-enclosed oocytes were cultured for 14-16 hours in an organ culture system at $37^{\circ}C$, 5% $CO_2$ in air and 100% humudified in incubator. MHBS was the basic medium used from which A23187, verapamil, $NiCl_{2.}$ $6H_2O$ and $LaCl_{3.}$ $7H_2O$ were added depending on the experimental groups. In follicle- or cumulus-enclosed oocytes wre cultured in these differently treated media. Following results were obtained from the present study. 1. The calcium ionophore A23187 directly or indirectly seems to stimulate GVBD of follicle-enclosed mouse oocytes. Increasing concentration of ionophore A23187 1ed to an increase in oocytes degeneration from the cumulus-enclosed mouse oocytes. 2. The organic $Ca^{++}$ channel blocker, verapamil does not induce GVBD of follicle-enclosed mouse oocytes. Specially, higher dose of 1 mM verapamil induced GVBD of follicle-enclosed mouse oocytes. However, cytoplasm of GVBD oocytes in 1 mM verapamil treated groups appeared shrunk. In the cumulus-enclosed oocytes, polar body formation was reduced in verapamil treated groups and degeneration increased. Verapamil inhibit oocyte maturation (polar body formation). 3. The $Ca^{++}$ inhibitor, Nickel ($NiCl_{2.}$ $6H_2O$) inhibits maturation of the follicle-enclosed oocytes. In the cumulus-enclosed oocytes the progression to MII (PB formation) was reduced and degeneration of mouse oocytes increased as the concentration of $Ni^{++}$ increase. The results indicates that nickel act as an inhibitor of calcium. 4. The $Ca^{++}$ inhibitors, Lanthanum ($LaCl_{3.}$ $7H_2O$) has shown different effect from that of nickel. In follicle-enclosed oocytes, 0.01mM lanthanum induced maturation of mouse oocytes. Polar body formation was reduced in the cumulus-enclosed oocytes all lanthanum treated group.

Keywords